

Professional ASP.NET MVC 1.0
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com.

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Chapter 1 is licensed under the terms of the Creative Commons Attribution No Derivatives 3.0 license.
Published simultaneously in Canada
ISBN: 978-0-470-38461-9
Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data is available from the publisher.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may
make. Further, readers should be aware that Internet Websites listed in this work may have changed or dis-
appeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

84619ffirsw.indd 6 3/3/09 8:30:50 AM

Professional ASP.NET MVC 1.0
Table of Contents
Chapter 1: NerdDinner.

Chapter 2: Model View Controller and ASP.NET.

Chapter 3: ASP.NET > ASP.NET MVC.

Chapter 4: Routes and URLs.

Chapter 5: Controllers.

Chapter 6: Views.

Chapter 7: AJAX.

Chapter 8: Filters.

Chapter 9: Securing Your Application.

Chapter 10: Test Driven Development With ASP.NET MVC.

Chapter 11: Testable Design Patterns.

Chapter 12: Best of Both Worlds: Web Forms and MVC Together.

Page 2 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Chapter Contents
NerdDinner .. 3

File->New Project ... 8

Creating the Database ... 17

Building the Model .. 26

Controllers and Views .. 42

Create, Update, Delete Form Scenarios ... 67

ViewData and ViewModel ... 101

Partials and Master Pages .. 108

Paging Support ... 118

Authentication and Authorization .. 127

AJAX Enabling RSVPs Accepts ... 138

Integrating an AJAX Map .. 146

Unit Testing ... 165

NerdDinner Wrap Up ... 186

Page 3 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

NerdDinner
The best way to learn a new framework is to build something with it. This first chapter walks through
how to build a small, but complete, application using ASP.NET MVC, and introduces some of the core
concepts behind it.

The application we are going to build is called “NerdDinner”. NerdDinner provides an easy way for
people to find and organize dinners online:

NerdDinner enables registered users to create, edit and delete dinners. It enforces a consistent set of
validation and business rules across the application:

Page 4 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Visitors to the site can search to find upcoming dinners being held near them:

Page 5 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Clicking a dinner will take them to a details page where they can learn more about it:

If they are interested in attending the dinner they can login or register on the site:

Page 6 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

They can then easily RSVP to attend the event:

Page 7 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We are going to begin implementing the NerdDinner application by using the File->New Project
command within Visual Studio to create a brand new ASP.NET MVC project. We’ll then incrementally
add functionality and features. Along the way we’ll cover how to create a database, build a model with
business rule validations, implement data listing/details UI, provide CRUD (Create, Update, Delete) form
entry support, implement efficient data paging, reuse UI using master pages and partials, secure the
application using authentication and authorization, use AJAX to deliver dynamic updates and interactive
map support, and implement automated unit testing.

You can build your own copy of NerdDinner from scratch by completing each step we walkthrough in
this chapter. Alternatively, you can download a completed version of the source code here:
http://tinyurl.com/aspnetmvc.

You can use either Visual Studio 2008 or the free Visual Web Developer 2008 Express to build the
application. You can use either SQL Server or the free SQL Server Express to host the database.

You can install ASP.NET MVC, Visual Web Developer 2008, and SQL Server Express using the Microsoft
Web Platform Installer available here: http://www.microsoft.com/web/downloads

http://tinyurl.com/aspnetmvc�
http://www.microsoft.com/web/downloads�

Page 8 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

File->New Project
We’ll begin our NerdDinner application by selecting the File->New Project menu item within Visual
Studio 2008 or the free Visual Web Developer 2008 Express.

This will bring up the “New Project” dialog. To create a new ASP.NET MVC application, we’ll select the
“Web” node on the left-hand side of the dialog and then choose the “ASP.NET MVC Web Application”
project template on the right:

We’ll name the new project “NerdDinner” and then click the “ok” button to create it.

When we click "ok" Visual Studio will bring up an additional dialog that prompts us to optionally create a
unit test project for the new application as well. This unit test project enables us to create automated
tests that verify the functionality and behavior of our application (something we’ll cover how to-do later
in this tutorial).

Page 9 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The "Test framework" dropdown in the above dialog is populated with all available ASP.NET MVC unit
test project templates installed on the machine. Versions can be downloaded for NUnit, MBUnit, and
XUnit. The built-in Visual Studio Unit Test framework is also supported.

Note: The Visual Studio Unit Test Framework is only available with Visual Studio 2008 Professional and
higher versions). If you are using VS 2008 Standard Edition or Visual Web Developer 2008 Express you
will need to download and install the NUnit, MBUnit or XUnit extensions for ASP.NET MVC in order for
this dialog to be shown. The dialog will not display if there aren’t any test frameworks installed.

We'll use the default "NerdDinner.Tests" name for the test project we create, and use the “Visual Studio
Unit Test” framework option. When we click the "ok" button Visual Studio will create a solution for us
with two projects in it - one for our web application and one for our unit tests:

Page 10 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Examining the NerdDinner directory structure
When you create a new ASP.NET MVC application with Visual Studio, it automatically adds a number of
files and directories to the project:

ASP.NET MVC projects by default have six top-level directories:

Directory Purpose
/Controllers Where you put Controller classes that handle URL requests
/Models Where you put classes that represent and manipulate data
/Views Where you put UI template files that are responsible for rendering output
/Scripts Where you put JavaScript library files and scripts (.js)
/Content Where you put CSS and image files, and other non-dynamic/non-JavaScript content
/App_Data Where you store data files you want to read/write.

ASP.NET MVC does not require this structure. In fact, developers working on large applications will
typically partition the application up across multiple projects to make it more manageable (for example:
data model classes often go in a separate class library project from the web application). The default
project structure, however, does provide a nice default directory convention that we can use to keep
our application concerns clean.

When we expand the /Controllers directory we’ll find that Visual Studio added two controller classes –
HomeController and AccountController – by default to the project:

Page 11 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we expand the /Views directory, we’ll find three sub-directories – /Home, /Account and /Shared –
as well as several template files within them were also added to the project by default:

Page 12 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we expand the /Content and /Scripts directories, we’ll find a Site.css file that is used to style all
HTML on the site, as well as JavaScript libraries that can enable ASP.NET AJAX and jQuery support within
the application:

When we expand the NerdDinner.Tests project we’ll find two classes that contain unit tests for our
controller classes:

Page 13 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

These default files added by Visual Studio provide us with a basic structure for a working application -
complete with home page, about page, account login/logout/registration pages, and an unhandled error
page (all wired-up and working out of the box).

Running the NerdDinner Application
We can run the project by choosing either the Debug->Start Debugging or Debug->Start Without
Debugging menu items:

This will launch the built-in ASP.NET Web-server that comes with Visual Studio, and run our application:

Page 14 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Below is the home page for our new project (URL: “/”) when it runs:

Clicking the “About” tab displays an about page (URL: “/Home/About”):

Page 15 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Clicking the “Log On” link on the top-right takes us to a Login page (URL: “/Account/LogOn”)

If we don’t have a login account we can click the register link (URL: “/Account/Register”) to create one:

Page 16 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The code to implement the above home, about, and logout/ register functionality was added by default
when we created our new project. We’ll use it as the starting point of our application.

Testing the NerdDinner Application
If we are using the Professional Edition or higher version of Visual Studio 2008, we can use the built-in
unit testing IDE support within Visual Studio to test the project:

Choosing one of the above options will open the “Test Results” pane within the IDE and provide us with
pass/fail status on the 27 unit tests included in our new project that cover the built-in functionality:

Page 17 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Creating the Database
We’ll be using a database to store all of the Dinner and RSVP data for our NerdDinner application.

The steps below show creating the database using the free SQL Server Express edition. All of the code
we’ll write works with both SQL Server Express and the full SQL Server.

Creating a new SQL Server Express database
We’ll begin by right-clicking on our web project, and then select the Add->New Item menu command:

This will bring up the “Add New Item” dialog. We’ll filter by the “Data” category and select the “SQL
Server Database” item template:

Page 18 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We’ll name the SQL Server Express database we want to create “NerdDinner.mdf” and hit ok. Visual
Studio will then ask us if we want to add this file to our \App_Data directory (which is a directory already
setup with both read and write security ACLs):

We’ll click “Yes” and our new database will be created and added to our Solution Explorer:

Page 19 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Creating Tables within our Database
We now have a new empty database. Let’s add some tables to it.

To do this we’ll navigate to the “Server Explorer” tab window within Visual Studio, which enables us to
manage databases and servers. SQL Server Express databases stored in the \App_Data folder of our
application will automatically show up within the Server Explorer. We can optionally use the “Connect
to Database” icon on the top of the “Server Explorer” window to add additional SQL Server databases
(both local and remote) to the list as well:

Page 20 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We will add two tables to our NerdDinner database – one to store our Dinners, and the other to track
RSVP acceptances to them. We can create new tables by right-clicking on the “Tables” folder within our
database and choosing the “Add New Table” menu command:

This will open up a table designer that allows us to configure the schema of our table. For our “Dinners”
table we will add 10 columns of data:

Page 21 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We want the “DinnerID” column to be a unique primary key for the table. We can configure this by
right-clicking on the “DinnerID” column and choosing the “Set Primary Key” menu item:

In addition to making DinnerID a primary key, we also want configure it as an “identity” column whose
value is automatically incremented as new rows of data are added to the table (meaning the first
inserted Dinner row will have a DinnerID of 1, the second inserted row will have a DinnerID of 2, etc).

We can do this by selecting the “DinnerID” column and then use the “Column Properties” editor to set
the “(Is Identity)” property on the column to “Yes”. We will use the standard identity defaults (start at 1
and increment 1 on each new Dinner row):

Page 22 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We’ll then save our table by typing Ctrl-S or by using the File->Save menu command. This will prompt us
to name the table. We’ll name it “Dinners”:

Our new Dinners table will then show up within our database in the server explorer.

We’ll then repeat the above steps and create a “RSVP” table. This table with have 3 columns. We will
setup the RsvpID column as the primary key, and also make it an identity column:

We’ll save it and give it the name “RSVP”.

Setting up a Foreign Key Relationship between Tables
We now have two tables within our database. Our last schema design step will be to setup a “one-to-
many” relationship between these two tables – so that we can associate each Dinner row with zero or
more RSVP rows that apply to it. We will do this by configuring the RSVP table’s “DinnerID” column to
have a foreign-key relationship to the “DinnerID” column in the “Dinners” table.

To do this we’ll open up the RSVP table within the table designer by double-clicking it in the server
explorer. We’ll then select the “DinnerID” column within it, right-click, and choose the “Relationshps…”
context menu command:

Page 23 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will bring up a dialog that we can use to setup relationships between tables:

We’ll click the “Add” button to add a new relationship to the dialog. Once a relationship has been
added, we’ll expand the “Tables and Column Specification” tree-view node within the property grid to
the right of the dialog, and then click the “…” button to the right of it:

Page 24 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Clicking the “…” button will bring up another dialog that allows us to specify which tables and columns
are involved in the relationship, as well as allow us to name the relationship.

We will change the Primary Key Table to be “Dinners”, and select the “DinnerID” column within the
Dinners table as the primary key. Our RSVP table will be the foreign-key table, and the RSVP.DinnerID
column will be associated as the foreign-key:

Page 25 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Now each row in the RSVP table will be associated with a row in the Dinner table. SQL Server will
maintain referential integrity for us – and prevent us from adding a new RSVP row if it does not point to
a valid Dinner row. It will also prevent us from deleting a Dinner row if there are still RSVP rows
referring to it.

Adding Data to our Tables
Let’s finish by adding some sample data to our Dinners table. We can add data to a table by right-
clicking on it within the Server Explorer and choosing the “Show Table Data” command:

Let’s add a few rows of Dinner data that we can use later as we start implementing the application:

Page 26 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Building the Model
In a model-view-controller framework the term “model” refers to the objects that represent the data of
the application, as well as the corresponding domain logic that integrates validation and business rules
with it. The model is in many ways the “heart” of an MVC-based application, and as we’ll see later
fundamentally drives the behavior of it.

The ASP.NET MVC framework supports using any data access technology, and developers can choose
from a variety of rich .NET data options to implement their models including: LINQ to Entities, LINQ to
SQL, NHibernate, LLBLGen Pro, SubSonic, WilsonORM, or just raw ADO.NET DataReaders or DataSets.

For our NerdDinner application we are going to use LINQ to SQL to create a simple domain model that
corresponds fairly closely to our database design, and adds some custom validation logic and business
rules. We will then implement a repository class that helps abstract away the data persistence
implementation from the rest of the application, and enables us to easily unit test it.

LINQ to SQL
LINQ to SQL is an ORM (object relational mapper) that ships as part of .NET 3.5.

LINQ to SQL provides an easy way to map database tables to .NET classes we can code against. For our
NerdDinner application we’ll use it to map the Dinners and RSVP tables within our database to Dinner
and RSVP model classes. The columns of the Dinners and RSVP tables will correspond to properties on
the Dinner and RSVP classes. Each Dinner and RSVP object will represent a separate row within the
Dinners or RSVP tables in the database.

LINQ to SQL allows us to avoid having to manually construct SQL statements to retrieve and update
Dinner and RSVP objects with database data. Instead, we’ll define the Dinner and RSVP classes, how
they map to/from the database, and the relationships between them. LINQ to SQL will then takes care
of generating the appropriate SQL execution logic to use at runtime when we interact and use them.

We can use the LINQ language support within VB and C# to write expressive queries that retrieve Dinner
and RSVP objects. This minimizes the amount of data code we need to write, and allows us to build
really clean applications.

Adding LINQ to SQL Classes to our project
We’ll begin by right-clicking on the “Models” folder within our project, and select the Add->New Item
menu command:

Page 27 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will bring up the “Add New Item” dialog. We’ll filter by the “Data” category and select the “LINQ to
SQL Classes” template within it:

Page 28 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We’ll name the item “NerdDinner” and click the “Add” button. Visual Studio will add a NerdDinner.dbml
file under our \Models directory, and then open the LINQ to SQL object relational designer:

Creating Data Model Classes with LINQ to SQL
LINQ to SQL enables us to quickly create data model classes from existing database schema. To-do this
we’ll open the NerdDinner database in the Server Explorer, and select the Tables we want to model in it:

Page 29 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can then drag the tables onto the LINQ to SQL designer surface. When we do this LINQ to SQL will
automatically create Dinner and RSVP classes using the schema of the tables (with class properties that
map to the database table columns):

By default the LINQ to SQL designer automatically "pluralizes" table and column names when it creates
classes based on a database schema. For example: the "Dinners" table in our example above resulted in
a "Dinner" class. This class naming helps make our models consistent with .NET naming conventions,
and I usually find that having the designer fix this up convenient (especially when adding lots of tables).
If you don't like the name of a class or property that the designer generates, though, you can always
override it and change it to any name you want. You can do this either by editing the entity/property
name in-line within the designer or by modifying it via the property grid.

By default the LINQ to SQL designer also inspects the primary key/foreign key relationships of the tables,
and based on them automatically creates default "relationship associations" between the different
model classes it creates. For example, when we modeled the Dinners and RSVP tables onto the LINQ to
SQL designer a one-to-many relationship association between the two was inferred based on the fact
that the RSVP table had a foreign-key to the Dinners table (this is indicated by the arrow in the
designer):

Page 30 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The above association will cause LINQ to SQL to add a strongly typed "Dinner" property to the RSVP class
that developers can use to access the Dinner entity associated with a given RSVP. It will also cause the
Dinner class to have a strongly typed "RSVPs" collection property that enables developers to retrieve
and update RSVP objects associated with that Dinner.

Below you can see an example of intellisense within Visual Studio when we create a new RSVP object
and add it to a Dinner’s RSVPs collection:

Page 31 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Notice above how LINQ to SQL created a “RSVPs” collection on the Dinner object. We can use this to
associate a foreign-key relationship between a Dinner and a RSVP row in our database:

If you don't like how the designer has modeled or named a table association, you can override it. Just
click on the association arrow within the designer and access its properties via the property grid to
rename, delete or modify it. For our NerdDinner application, though, the default association rules work
well for the data model classes we are building and we can just use the default behavior.

NerdDinnerDataContext Class
Visual Studio automatically generates .NET classes that represent the models and database relationships
defined using the LINQ to SQL designer. A LINQ to SQL DataContext class is also generated for each
LINQ to SQL designer file added to the solution. Because we named our LINQ to SQL class item
“NerdDinner”, the DataContext class created will be called “NerdDinnerDataContext”. This
NerdDinnerDataContext class is the primary way we will interact with the database.

Our NerdDinnerDataContext class exposes two properties - “Dinners” and “RSVPs” - that represent the
two tables we modeled within the database. We can use C# to write LINQ queries against those
properties to query and retrieve Dinner and RSVP objects from the database.

The following code demonstrates how to instantiate a NerdDinnerDataContext object and perform a
LINQ query against it to obtain a sequence of Dinners that occur in the future.

Page 32 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

A NerdDinnerDataContext object tracks any changes made to Dinner and RSVP objects retrieved using it,
and enable us to easily save the changes back to the database. The code below demonstrates how we
can use a LINQ query to retrieve a single Dinner object from the database, update two of its properties,
and then save the changes back to the database:

NerdDinnerDataContext db = new NerdDinnerDataContext();

// Retrieve Dinner object that reprents row with DinnerID of 1
Dinner dinner = db.Dinners.Single(d => d.DinnerID == 1);

// Update two properties on Dinner
dinner.Title = "Changed Title";
dinner.Description = "This dinner will be fun";

// Persist changes to database
db.SubmitChanges();

The NerdDinnerDataContext object in the code above automatically tracked the property changes made
to the Dinner object we retrieved from it. When we called the “SubmitChanges()” method, it executed
an appropriate SQL “UPDATE” statement to the database to persist the updated values back.

Creating a DinnerRepository Class
For small applications it is sometimes fine to have Controllers work directly against a LINQ to SQL
DataContext class, and embed LINQ queries within the Controllers. As applications get larger, though,
this approach becomes cumbersome to maintain and test. It can also lead to us duplicating the same
LINQ queries in multiple places.

Page 33 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

One approach that can make applications easier to maintain and test is to use a “repository” pattern. A
repository class helps encapsulate data querying and persistence logic, and abstracts away the
implementation details of the data persistence from the application. In addition to making application
code cleaner, using a repository pattern can make it easier to change data storage implementations in
the future, and it can help facilitate unit testing an application without requiring a real database.

For our NerdDinner application we’ll define a DinnerRepository class with the below signature:

public class DinnerRepository {

 // Query Methods
 public IQueryable<Dinner> FindAllDinners();
 public IQueryable<Dinner> FindUpcomingDinners();
 public Dinner GetDinner(int id);

 // Insert/Delete
 public void Add(Dinner dinner);
 public void Delete(Dinner dinner);

 // Persistence
 public void Save();
}

Note: Later in this chapter we’ll extract an IDinnerRepository interface from this class and enable
dependency injection with it on our Controllers. To begin with, though, we are going to start simple and
just work directly with the DinnerRepository class.

To implement this class we’ll right-click on our “Models” folder and choose the Add->New Item menu
command. Within the “Add New Item” dialog we’ll select the “Class” template and name the file
“DinnerRepository.cs”:

Page 34 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can then implement our DinnerRespository class using the code below:

public class DinnerRepository {

 private NerdDinnerDataContext db = new NerdDinnerDataContext();

 //
 // Query Methods

 public IQueryable<Dinner> FindAllDinners() {
 return db.Dinners;
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in db.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

 public Dinner GetDinner(int id) {
 return db.Dinners.SingleOrDefault(d => d.DinnerID == id);
 }

 //
 // Insert/Delete Methods

 public void Add(Dinner dinner) {
 db.Dinners.InsertOnSubmit(dinner);
 }

 public void Delete(Dinner dinner) {
 db.RSVPs.DeleteAllOnSubmit(dinner.RSVPs);
 db.Dinners.DeleteOnSubmit(dinner);
 }

 //
 // Persistence

 public void Save() {
 db.SubmitChanges();
 }
}

Page 35 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Retrieving, Updating, Inserting and Deleting using the DinnerRepository class
Now that we've created our DinnerRepository class, let’s look at a few code examples that demonstrate
common tasks we can do with it:

Querying Examples

The code below retrieves a single Dinner using the DinnerID value:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

The code below retrieves all upcoming dinners and loops over them:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve all upcoming Dinners
var upcomingDinners = dinnerRepository.FindUpcomingDinners();

// Loop over each upcoming Dinner
foreach (Dinner dinner in upcomingDinners) {

}

Insert and Update Examples

The code below demonstrates adding two new dinners. Additions/modifications to the repository
aren’t committed to the database until the “Save()” method is called on it. LINQ to SQL automatically
wraps all changes in a database transaction – so either all changes happen or none of them do when our
repository saves:

DinnerRepository dinnerRepository = new DinnerRepository();

// Create First Dinner
Dinner newDinner1 = new Dinner();
newDinner1.Title = "Dinner with Scott";
newDinner1.HostedBy = "ScotGu";
newDinner1.ContactPhone = "425-703-8072";

// Create Second Dinner
Dinner newDinner2 = new Dinner();
newDinner2.Title = "Dinner with Bill";
newDinner2.HostedBy = "BillG";
newDinner2.ContactPhone = "425-555-5151";

// Add Dinners to Repository
dinnerRepository.Add(newDinner1);
dinnerRepository.Add(newDinner2);

// Persist Changes
dinnerRepository.Save();

Page 36 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The code below retrieves an existing Dinner object, and modifies two properties on it. The changes are
committed back to the database when the “Save()” method is called on our repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Update Dinner properties
dinner.Title = "Update Title";
dinner.HostedBy = "New Owner";

// Persist changes
dinnerRepository.Save();

The code below retrieves a dinner and then adds an RSVP to it. It does this using the RSVPs collection on
the Dinner object that LINQ to SQL created for us (because there is a primary-key/foreign-key
relationship between the two in the database). This change is persisted back to the database as a new
RSVP table row when the “Save()” method is called on the repository:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Create a new RSVP object
RSVP myRSVP = new RSVP();
myRSVP.AttendeeName = "ScottGu";

// Add RSVP to Dinner's RSVP Collection
dinner.RSVPs.Add(myRSVP);

// Persist changes
dinnerRepository.Save();

Delete Example

The code below retrieves an existing Dinner object, and then marks it to be deleted. When the “Save()”
method is called on the repository it will commit the delete back to the database:

DinnerRepository dinnerRepository = new DinnerRepository();

// Retrieve specific dinner by its DinnerID
Dinner dinner = dinnerRepository.GetDinner(5);

// Mark dinner to be deleted
dinnerRepository.Delete(dinner);

// Persist changes
dinnerRepository.Save();

Page 37 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Integrating Validation and Business Rule Logic with Model Classes
Integrating validation and business rule logic is a key part of any application that works with data.

Schema Validation

When model classes are defined using the LINQ to SQL designer, the datatypes of the properties in the
data model classes will correspond to the datatypes of the database table. For example: if the
“EventDate” column in the Dinners table is a “datetime”, the data model class created by LINQ to SQL
will be of type “DateTime” (which is a built-in .NET datatype). This means you will get compile errors if
you attempt to assign an integer or boolean to it from code, and it will raise an error automatically if you
attempt to implicitly convert a non-valid string type to it at runtime.

LINQ to SQL will also automatically handles escaping SQL values for you when using strings - so you don't
need to worry about SQL injection attacks when using it.

Validation and Business Rule Logic

Data-type validation is useful as a first step, but is rarely sufficient. Most real-world scenarios require
the ability to specify richer validation logic that can span multiple properties, execute code, and often
have awareness of a model’s state (for example: is it being created /updated/deleted, or within a
domain-specific state like “archived”).

There are a variety of different patterns and frameworks that can be used to define and apply validation
rules to model classes, and there are several .NET based frameworks out there that can be used to help
with this. You can use pretty much any of them within ASP.NET MVC applications.

For the purposes of our NerdDinner application, we’ll use a relatively simple and straight-forward
pattern where we expose an IsValid property and a GetRuleViolations() method on our Dinner model
object. The IsValid property will return true or false depending on whether the validation and business
rules are all valid. The GetRuleViolations() method will return a list of any rule errors.

We’ll implement IsValid and GetRuleViolations() by adding a “partial class” to our project. Partial classes
can be used to add methods/properties/events to classes maintained by a VS designer (like the Dinner
class generated by the LINQ to SQL designer) and help avoid the tool from messing with our code.

We can add a new partial class to our project by right-clicking on the \Models folder, and then select the
“Add New Item” menu command. We can then choose the “Class” template within the “Add New Item”
dialog and name it Dinner.cs.

Page 38 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Clicking the “Add” button will add a Dinner.cs file to our project and open it within the IDE. We can then
implement a basic rule/validation enforcement framework using the below code:

public partial class Dinner {

 public bool IsValid {
 get { return (GetRuleViolations().Count() == 0); }
 }

 public IEnumerable<RuleViolation> GetRuleViolations() {
 yield break;
 }

 partial void OnValidate(ChangeAction action) {
 if (!IsValid)
 throw new ApplicationException("Rule violations prevent saving");
 }
}

public class RuleViolation {

 public string ErrorMessage { get; private set; }
 public string PropertyName { get; private set; }

 public RuleViolation(string errorMessage) {
 ErrorMessage = errorMessage;
 }

 public RuleViolation(string errorMessage, string propertyName) {
 ErrorMessage = errorMessage;
 PropertyName = propertyName;
 }
}

Page 39 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

A few notes about this code:

• The Dinner class is prefaced with a “partial” keyword – which means the code contained within it
will be combined with the class generated/maintained by the LINQ to SQL designer and compiled
into a single class.

• Invoking the GetRuleViolations() method will cause our validation and business rules to be evaluated
(we’ll implement them shortly). The GetRuleViolations () method returns back a sequence of
RuleViolation objects that provide more details about each rule error.

• The IsValid property provides a convenient helper property that indicates whether the Dinner object
has any active RuleViolations. It can be proactively checked by a developer using the Dinner object
at anytime (and does not raise an exception).

• The OnValidate() partial method is a hook that LINQ to SQL provides that allows us to be notified
anytime the Dinner object is about to be persisted within the database. Our OnValidate()
implementation above ensures that the Dinner has no RuleViolations before it is saved. If it is in an
invalid state it raises an exception, which will cause LINQ to SQL to abort the transaction.

This approach provides a simple framework that we can integrate validation and business rules into. For
now let’s add the below rules to our GetRuleViolations() method:

public IEnumerable<RuleViolation> GetRuleViolations() {

 if (String.IsNullOrEmpty(Title))
 yield return new RuleViolation("Title required", "Title");

 if (String.IsNullOrEmpty(Description))
 yield return new RuleViolation("Description required","Description");

 if (String.IsNullOrEmpty(HostedBy))
 yield return new RuleViolation("HostedBy required", "HostedBy");

 if (String.IsNullOrEmpty(Address))
 yield return new RuleViolation("Address required", "Address");

 if (String.IsNullOrEmpty(Country))
 yield return new RuleViolation("Country required", "Country");

 if (String.IsNullOrEmpty(ContactPhone))
 yield return new RuleViolation("Phone# required", "ContactPhone");

 if (!PhoneValidator.IsValidNumber(ContactPhone, Country))
 yield return new RuleViolation("Phone# does not match country",
 "ContactPhone");

 yield break;
}

We are using the “yield return” feature of C# to return a sequence of any RuleViolations. The first six
rule checks above simply enforce that string properties on our Dinner cannot be null or empty. The last
rule is a little more interesting, and calls a PhoneValidator.IsValidNumber() helper method that we can
add to our project to verify that the ContactPhone number format matches the Dinner’s country.

Page 40 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can use .NET’s regular expression support to implement this phone validation support. Below is a
simple PhoneValidator implementation that we can add to our project that enables us to add country-
specific Regex pattern checks:

public class PhoneValidator {

 static IDictionary<string, Regex> countryRegex =

new Dictionary<string, Regex>() {
 { "USA", new Regex("^[2-9]\\d{2}-\\d{3}-\\d{4}$")},
 { "UK", new
Regex("(^1300\\d{6}$)|(^1800|1900|1902\\d{6}$)|(^0[2|3|7|8]{1}[0-
9]{8}$)|(^13\\d{4}$)|(^04\\d{2,3}\\d{6}$)")},
 { "Netherlands", new Regex("(^\\+[0-9]{2}|^\\+[0-
9]{2}\\(0\\)|^\\(\\+[0-9]{2}\\)\\(0\\)|^00[0-9]{2}|^0)([0-9]{9}$|[0-9\\-
\\s]{10}$)")},
 };

 public static bool IsValidNumber(string phoneNumber, string country) {
 if (country != null && countryRegex.ContainsKey(country))
 return countryRegex[country].IsMatch(phoneNumber);
 else
 return false;
 }

 public static IEnumerable<string> Countries {
 get {
 return countryRegex.Keys;
 }
 }
}

Now when we try to create or update a Dinner, our validation logic rules will be enforced. Developers
can proactively determine if a Dinner object is valid, and retrieve a list of all violations in it without
raising any exceptions:

Dinner dinner = dinnerRepository.GetDinner(5);

dinner.Country = "USA";
dinner.ContactPhone = "425-555-BOGUS";

if (!dinner.IsValid) {

 var errors = dinner.GetRuleViolations();

 // do something to fix errors
}

If we attempt to save a Dinner in an invalid state, an exception will be raised when we call the Save()
method on the DinnerRepository. This occurs because our Dinner.OnValidate() partial method raises an
exception if any rule violations exist in the Dinner. We can catch this exception and reactively retrieve a
list of the violations to fix:

Page 41 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Dinner dinner = dinnerRepository.GetDinner(5);

try {
 dinner.Country = "USA";
 dinner.ContactPhone = "425-555-BOGUS";

 dinnerRepository.Save();
}
catch {

 var errors = dinner.GetRuleViolations();

 // do something to fix errors
}

Because our validation and business rules are implemented within our domain model layer, and not
within the UI layer, they will be applied and used across all scenarios within our application. We can
later change or add business rules and have all code that works with our Dinner objects honor them.
Having the flexibility to change business rules in one place, without having these changes ripple
throughout the application and UI logic, is a sign of a well-written application, and a benefit that an MVC
framework helps encourage.

Page 42 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Controllers and Views
With traditional web frameworks (classic ASP, PHP, ASP.NET Web Forms, etc), incoming URLs are
typically mapped to files on disk. For example: a request for a URL like "/Products.aspx" or
"/Products.php” might be processed by a “Products.aspx” or “Products.php” file.

Web-based MVC frameworks map URLs to server code in a slightly different way. Instead of mapping
incoming URLs to files, they instead map URLs to methods on classes. These classes are called
“Controllers” and they are responsible for processing incoming HTTP requests, handling user input,
retrieving and saving data, and determining the response to send back to the client (display HTML,
download a file, redirect to a different URL, etc).

Now that we have built up a basic model for our NerdDinner application, our next step will be to add a
Controller to the application that takes advantage of it to provide users with a data listing/details
navigation experience for Dinners on our site.

Adding a DinnersController Controller
We’ll begin by right-clicking on the “Controllers” folder within our web project, and then select the Add-
>Controller menu command (tip: you can also execute this command by typing Ctrl-M, Ctrl-C):

Page 43 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will bring up the “Add Controller” dialog:

We’ll name the new controller “DinnersController” and click the “Add” button. Visual Studio will then
add a DinnersController.cs file under our \Controllers directory:

It will also open up the new DinnersController class within the code-editor.

Adding Index() and Details() Action Methods to the DinnersController Class
We want to enable visitors using our application to browse the list of upcoming dinners, and enable
them to click on any Dinner in the list to see specific details about it. We’ll do this by publishing the
following URLs from our application:

Page 44 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

URL Purpose

/Dinners/ Display an HTML list of upcoming dinners

/Dinners/Details/[id] Display details about a specific dinner indicated by an “id” parameter
embedded within the URL – which will match the DinnerID of the dinner in
the database.

For example: /Dinners/Details/2 would display an HTML page with details
about the Dinner whose DinnerID value is 2.

We can publish initial implementations of these URLs by adding two public “action methods” to our
DinnersController class:

public class DinnersController : Controller {

 //
 // GET: /Dinners/

 public void Index() {
 Response.Write("<h1>Coming Soon: Dinners</h1>");
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Response.Write("<h1>Details DinnerID: " + id + "</h1>");
 }
}

We can then run the application and use our browser to invoke them. Typing in the “/Dinners/” URL will
cause our Index() method to run, and it will send back the following response:

Page 45 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Typing in the “/Dinners/Details/2” URL will cause our Details() method to run, and send back the
following response:

You might be wondering - how did ASP.NET MVC know to create our DinnersController class and invoke
those methods? To understand that let’s take a quick look at how routing works.

Understanding ASP.NET MVC Routing
ASP.NET MVC includes a powerful URL routing engine that provides a lot of flexibility in controlling how
URLs are mapped to controller classes. It allows us to completely customize how ASP.NET MVC chooses
which controller class to create, which method to invoke on it, as well as configure different ways that
variables can be automatically parsed from the URL/Querystring and passed to the method as
parameter arguments. It delivers the flexibility to totally optimize a site for SEO (search engine
optimization) as well as publish any URL structure we want from an application.

By default, new ASP.NET MVC projects come with a preconfigured set of URL routing rules already
registered. This enables us to easily get started on an application without having to explicitly configure
anything. The default routing rule registrations can be found within the “Application” class of our
projects – which we can open by double-clicking the “Global.asax” file in the root of our project:

Page 46 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The default ASP.NET MVC routing rules are registered within the “RegisterRoutes” method of this class:

public void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL w/ params
 new { controller="Home", action="Index", id="" } // Param defaults
);

}

The “routes.MapRoute()” method call above registers a default routing rule that maps incoming URLs to
controller classes using the URL format: "/{controller}/{action}/{id}” – where “controller” is the name of
the controller class to instantiate, “action” is the name of a public method to invoke on it, and “id” is an
optional parameter embedded within the URL that can be passed as an argument to the method. The
third parameter passed to the “MapRoute()” method call is a set of default values to use for the
controller/action/id values in the event that they are not present in the URL (Controller = “Home”,
Action=”Index”, Id=””).

Below is a table that demonstrates how a variety of URLs are mapped using the default
“/{controllers}/{action}/{id}” route rule:

URL Controller Class Action Method Parameters Passed

/Dinners/Details/2 DinnersController Details(id) id=2

/Dinners/Edit/5 DinnersController Edit(id) id=5

/Dinners/Create DinnersController Create() N/A

/Dinners DinnersController Index() N/A

/Home HomeController Index() N/A

/ HomeController Index() N/A

The last three rows show the default values (Controller = Home, Action = Index, Id = "") being used.
Because the “Index” method is registered as the default action name if one isn’t specified, the
“/Dinners” and “/Home” URLs cause the Index() action method to be invoked on their Controller classes.
Because the “Home” controller is registered as the default controller if one isn’t specified, the “/” URL
causes the HomeController to be created, and the Index() action method on it to be invoked.

If you don’t like these default URL routing rules, the good news is that they are easy to change - just edit
them within the RegisterRoutes method above. For our NerdDinner application, though, we aren’t
going to change any of the default URL routing rules – instead we’ll just use them as-is.

Page 47 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Using the DinnerRepository from our DinnersController
Let’s now replace the current implementation of our Index() and Details() action methods with
implementations that use our model.

We’ll use the DinnerRepository class we built earlier to implement the behavior. We’ll begin by adding a
“using” statement that references the “NerdDinner.Models” namespace, and then declare an instance
of our DinnerRepository as a field on our DinnerController class.

Later in this chapter we’ll introduce the concept of “Dependency Injection” and show another way for
our Controllers to obtain a reference to a DinnerRepository that enables better unit testing – but for
right now we’ll just create an instance of our DinnerRepository inline like below.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using NerdDinner.Models;

namespace NerdDinner.Controllers {

 public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public void Index() {
 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 }

 //
 // GET: /Dinners/Details/2

 public void Details(int id) {
 Dinner dinner = dinnerRepository.GetDinner(id);
 }
 }
}

Now we are ready to generate a HTML response back using our retrieved data model objects.

Using Views with our Controller
While it is possible to write code within our action methods to assemble HTML and then use the
Response.Write() helper method to send it back to the client, that approach becomes fairly unwieldy
quickly. A much better approach is for us to only perform application and data logic inside our
DinnersController action methods, and to then pass the data needed to render a HTML response to a
separate "view" template that is responsible for outputting the HTML representation of it. As we’ll see

Page 48 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

in a moment, a “view” template is a text file that typically contains a combination of HTML markup and
embedded rendering code.

Separating our controller logic from our view rendering brings several big benefits. In particular it helps
enforce a clear "separation of concerns" between the application code and UI formatting/rendering
code. This makes it much easier to unit-test application logic in isolation from UI rendering logic. It
makes it easier to later modify the UI rendering templates without having to make application code
changes. And it can make it easier for developers and designers to collaborate together on projects.

We can update our DinnersController class to indicate that we want to use a view template to send back
an HTML UI response by changing the method signatures of our two action methods from having a
return type of “void” to instead have a return type of “ActionResult”. We can then call the View() helper
method on the Controller base class to return back a “ViewResult” object:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View("Index", dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View("Details", dinner);
 }
}

The signature of the View() helper method we are using above looks like below:

The first parameter to the View() helper method is the name of the view template file we want to use to
render the HTML response. The second parameter is a model object that contains the data that the
view template needs in order to render the HTML response.

Page 49 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Within our Index() action method we are calling the View() helper method and indicating that we want
to render an HTML listing of dinners using an “Index” view template. We are passing the view template
a sequence of Dinner objects to generate the list from:

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View("Index", dinners);
 }

Within our Details() action method we attempt to retrieve a Dinner object using the id provided within
the URL. If a valid Dinner is found we call the View() helper method, indicating we want to use a
“Details” view template to render the retrieved Dinner object. If an invalid dinner is requested, we
render a helpful error message that indicates that the Dinner doesn’t exist using a “NotFound” view
template (and an overloaded version of the View() helper method that just takes the template name):

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View("Details", dinner);
 }

Let’s now implement the “NotFound”, “Details”, and “Index” view templates.

Implementing the “NotFound” View Template
We’ll begin by implementing the “NotFound” view template – which displays a friendly error message
indicating that the requested dinner can’t be found.

We’ll create a new view template by positioning our text cursor within a controller action method, and
then by right clicking and choosing the “Add View” menu command (we can also execute this command
by typing Ctrl-M, Ctrl-V):

Page 50 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will bring up an “Add View” dialog like below. By default the dialog will pre-populate the name of
the view to create to match the name of the action method the cursor was in when the dialog was
launched (in this case “Details”). Because we want to first implement the “NotFound” template, we’ll
override this view name and set it to instead be “NotFound”:

Page 51 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Add” button, Visual Studio will create a new “NotFound.aspx” view template for us
within the “\Views\Dinners” directory (which it will also create if the directory doesn’t already exist):

It will also open up our new “NotFound.aspx” view template within the code-editor:

View templates by default have two “content regions” where we can add content and code. The first
allows us to customize the “title” of the HTML page sent back. The second allows us to customize the
“main content” of the HTML page sent back.

Page 52 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

To implement our “NotFound” view template we’ll add some basic content:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Dinner Not Found
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Dinner Not Found</h2>

 <p>Sorry - but the dinner you requested doesn't exist or was deleted.</p>

</asp:Content>

We can then try it out within the browser. To do this let’s request the “/Dinners/Details/9999” URL.
This will refer to a dinner that doesn’t currently exist in the database, and will cause our
DinnersController.Details() action method to render our “NotFound” view template:

One thing you’ll notice in the screen-shot above is that our basic view template has inherited a bunch of
HTML that surrounds the main content on the screen. This is because our view-template is using a
“master page” template that enables us to apply a consistent layout across all views on the site. We’ll
discuss how master pages work more in a later part of this chapter.

Implementing the “Details” View Template
Let’s now implement the “Details” view template – which will generate HTML for a single Dinner model.

We’ll do this by positioning our text cursor within the Details action method, and then right click and
choose the “Add View” menu command (or press Ctrl-M, Ctrl-V):

Page 53 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will bring up the “Add View” dialog. We’ll keep the default view name (“Details”). We’ll also select
the “Create a strongly-typed View” checkbox in the dialog and select (using the combobox dropdown)
the name of the model type we are passing from the Controller to the View. For this view we are
passing a Dinner object (the fully qualified name for this type is: “NerdDinner.Models.Dinner”):

Page 54 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Unlike the previous template, where we chose to create an “Empty View”, this time we will choose to
automatically “scaffold” the view using a “Details” template. We can indicate this by changing the
“View content” drop-down in the dialog above.

“Scaffolding” will generate an initial implementation of our details view template based on the Dinner
model we are passing to it. This provides an easy way for us to quickly get started on our view template
implementation.

When we click the “Add” button, Visual Studio will create a new “Details.aspx” view template file for us
within our “\Views\Dinners” directory:

It will also open up our new “Details.aspx” view template within the code-editor. It will contain an initial
scaffold implementation of a details view based on a Dinner model. The scaffolding engine uses .NET
reflection to look at the public properties exposed on the class passed it, and will add appropriate
content based on each type it finds:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Details
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Details</h2>

Page 55 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <fieldset>
 <legend>Fields</legend>
 <p>
 DinnerID:
 <%= Html.Encode(Model.DinnerID) %>
 </p>
 <p>
 Title:
 <%= Html.Encode(Model.Title) %>
 </p>
 <p>
 EventDate:
 <%= Html.Encode(String.Format("{0:g}", Model.EventDate)) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>
 HostedBy:
 <%= Html.Encode(Model.HostedBy) %>
 </p>
 <p>
 ContactPhone:
 <%= Html.Encode(Model.ContactPhone) %>
 </p>
 <p>
 Address:
 <%= Html.Encode(Model.Address) %>
 </p>
 <p>
 Country:
 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Latitude:
 <%= Html.Encode(String.Format("{0:F}", Model.Latitude)) %>
 </p>
 <p>
 Longitude:
 <%= Html.Encode(String.Format("{0:F}", Model.Longitude)) %>
 </p>
 </fieldset>
 <p>
 <%=Html.ActionLink("Edit", "Edit", new { id=Model.DinnerID }) %> |
 <%=Html.ActionLink("Back to List", "Index") %>
 </p>

</asp:Content>

We can request the “/Dinners/Details/1” URL to see what this “details” scaffold implementation looks
like in the browser. Using this URL will display one of the dinners we manually added to our database
when we first created it:

Page 56 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This gets us up and running quickly, and provides us with an initial implementation of our Details.aspx
view. We can then go and tweak it to customize the UI to our satisfaction.

When we look at the Details.aspx template more closely, we’ll find that it contains static HTML as well as
embedded rendering code. <% %> code nuggets execute code when the view template renders, and
<%= %> code nuggets execute the code contained within them and then render the result to the output
stream of the template.

We can write code within our View that accesses the “Dinner” model object that was passed from our
controller using a strongly-typed “Model” property. Visual Studio provides us with full code-intellisense
when accessing this “Model” property within the editor:

Page 57 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Let’s make some tweaks so that the source for our final Details view template looks like below:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Dinner: <%= Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2><%= Html.Encode(Model.Title) %></h2>
 <p>
 When:
 <%= Model.EventDate.ToShortDateString() %>

 @
 <%= Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%= Html.Encode(Model.Address) %>,
 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>
 Organizer:
 <%= Html.Encode(Model.HostedBy) %>
 (<%= Html.Encode(Model.ContactPhone) %>)
 </p>

 <%= Html.ActionLink("Edit Dinner", "Edit", new { id=Model.DinnerID })%> |
 <%= Html.ActionLink("Delete Dinner","Delete", new { id=Model.DinnerID})%>

</asp:Content>

When we access the “/Dinners/Details/1” URL again it will render like so:

Page 58 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing the “Index” View Template
Let’s now implement the “Index” view template – which will generate a listing of upcoming Dinners. To-
do this we’ll position our text cursor within the Index action method, and then right click and choose the
“Add View” menu command (or press Ctrl-M, Ctrl-V).

Within the “Add View” dialog we’ll keep the view template named “Index” and select the “Create a
strongly-typed view” checkbox. This time we will choose to automatically generate a “List” view
template, and select “NerdDinner.Models.Dinner” as the model type passed to the view (which because
we have indicated we are creating a “List” scaffold will cause the Add View dialog to assume we are
passing a sequence of Dinner objects from our Controller to the View):

Page 59 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Add” button, Visual Studio will create a new “Index.aspx” view template file for us
within our “\Views\Dinners” directory. It will “scaffold” an initial implementation within it that provides
an HTML table listing of the Dinners we pass to the view.

When we run the application and access the “/Dinners/” URL it will render our list of dinners like so:

Page 60 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The table solution above gives us a grid-like layout of our Dinner data – which isn’t quite what we want
for our consumer facing Dinner listing. We can update the Index.aspx view template and modify it to list
fewer columns of data, and use a element to render them instead of a table using the code below:

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Upcoming Dinners</h2>

 <% foreach (var dinner in Model) { %>

 <%= Html.Encode(dinner.Title) %>
 on
 <%= Html.Encode(dinner.EventDate.ToShortDateString())%>
 @
 <%= Html.Encode(dinner.EventDate.ToShortTimeString())%>

 <% } %>

</asp:Content>

Page 61 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We are using the "var" keyword within the above foreach statement as we loop over each dinner in our
Model. Those unfamiliar with C# 3.0 might think that using “var” means that the dinner object is late-
bound. It instead means that the compiler is using type-inference against the strongly typed “Model”
property (which is of type “IEnumerable<Dinner>”) and compiling the local “dinner” variable as a Dinner
type – which means we get full intellisense and compile-time checking for it within code blocks:

When we hit refresh on the /Dinners URL in our browser our updated view now looks like below:

Page 62 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This is looking better – but isn’t entirely there yet. Our last step is to enable end-users to click individual
Dinners in the list and see details about them. We’ll implement this by rendering HTML hyperlink
elements that link to the Details action method on our DinnersController.

We can generate these hyperlinks within our Index view in one of two ways. The first is to manually
create HTML <a> elements like below, where we embed <% %> blocks within the <a> HTML element:

An alternative approach we can use is to take advantage of the built-in "Html.ActionLink()" helper
method within ASP.NET MVC that supports programmatically creating an HTML <a> element that links
to another action method on a Controller:

<%= Html.ActionLink(dinner.Title, "Details", new { id=dinner.DinnerID }) %>

The first parameter to the Html.ActionLink() helper method is the link-text to display (in this case the
title of the dinner), the second parameter is the Controller action name we want to generate the link to
(in this case the Details method), and the third parameter is a set of parameters to send to the action
(implemented as an anonymous type with property name/values). In this case we are specifying the
“id” parameter of the dinner we want to link to, and because the default URL routing rule in ASP.NET
MVC is "{Controller}/{Action}/{id}" the Html.ActionLink() helper method will generate the following
output:

.NET Futures

For our Index.aspx view we’ll use the Html.ActionLink() helper method approach and have each dinner
in the list link to the appropriate details URL:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Upcoming Dinners
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Upcoming Dinners</h2>

Page 63 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <% foreach (var dinner in Model) { %>

 <%= Html.ActionLink(dinner.Title, "Details",

new { id=dinner.DinnerID }) %>
 on
 <%= Html.Encode(dinner.EventDate.ToShortDateString())%>
 @
 <%= Html.Encode(dinner.EventDate.ToShortTimeString())%>

 <% } %>

</asp:Content>

And now when we hit the /Dinners URL our dinner list looks like below:

When we click any of the Dinners in the list we’ll navigate to see details about it:

Page 64 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Convention-based naming and the \Views directory structure
ASP.NET MVC applications by default use a convention-based directory naming structure when resolving
view templates. This allows developers to avoid having to fully-qualify a location path when referencing
views from within a Controller class. By default ASP.NET MVC will look for the view template file within
the \Views\[ControllerName]\ directory underneath the application.

For example, we’ve been working on the DinnersController class – which explicitly references three view
templates: “Index”, “Details” and “NotFound”. ASP.NET MVC will by default look for these views within
the \Views\Dinners directory underneath our application root directory:

Page 65 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Notice above how there are currently three controller classes within the project (DinnersController,
HomeController and AccountController – the last two were added by default when we created the
project), and there are three sub-directories (one for each controller) within the \Views directory.

Views referenced from the Home and Accounts controllers will automatically resolve their view
templates from the respective \Views\Home and \Views\Account directories. The \Views\Shared sub-
directory provides a way to store view templates that are re-used across multiple controllers within the
application. When ASP.NET MVC attempts to resolve a view template, it will first check within the
\Views\[Controller] specific directory, and if it can’t find the view template there it will look within the
\Views\Shared directory.

When it comes to naming individual view templates, the recommended guidance is to have the view
template share the same name as the action method that caused it to render. For example, above our
“Index” action method is using the “Index” view to render the view result, and the “Details” action
method is using the “Details” view to render its results. This makes it easy to quickly see which template
is associated with each action.

Developers do not need to explicitly specify the view template name when the view template has the
same name as the action method being invoked on the controller. We can instead just pass the model

Page 66 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

object to the “View()” helper method (without specifying the view name), and ASP.NET MVC will
automatically infer that we want to use the \Views\[ControllerName]\[ActionName] view template on
disk to render it.

This allows us to clean up our controller code a little, and avoid duplicating the name twice in our code:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View(dinner);
 }
}

The code above is all that is needed to implement a nice Dinner listing/details experience for the site.

Page 67 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Create, Update, Delete Form Scenarios
We’ve introduced controllers and views, and covered how to use them to implement a listing/details
experience for Dinners on site. Our next step will be to take our DinnersController class further and
enable support for editing, creating and deleting Dinners with it as well.

URLs handled by DinnersController
We previously added action methods to DinnersController that implemented support for two URLs:
/Dinners and /Dinners/Details/[id].

URL VERB Purpose

/Dinners/ GET Display an HTML list of upcoming dinners.

/Dinners/Details/[id] GET Display details about a specific dinner.

We will now add action methods to implement three additional URLs: /Dinners/Edit/[id],
/Dinners/Create, and /Dinners/Delete/[id]. These URLs will enable support for editing existing Dinners,
creating new Dinners, and deleting Dinners.

We will support both HTTP GET and HTTP POST verb interactions with these new URLs. HTTP GET
requests to these URLs will display the initial HTML view of the data (a form populated with the Dinner
data in the case of “edit”, a blank form in the case of “create”, and a delete confirmation screen in the
case of “delete”). HTTP POST requests to these URLs will save/update/delete the Dinner data in our
DinnerRepository (and from there to the database).

URL VERB Purpose

/Dinners/Edit/[id] GET Display an editable HTML form populated with Dinner data.

POST Save the form changes for a particular Dinner to the database.

/Dinners/Create GET Display an empty HTML form that allows users to define new Dinners.

POST Create a new Dinner and save it in the database.

/Dinners/Delete/[id] GET Display a confirmation screen that asks the user whether they want to
delete the specified dinner.

POST Deletes the specified dinner from the database.

Let’s begin by implementing the “edit” scenario.

Page 68 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing the HTTP-GET Edit Action Method
We’ll start by implementing the HTTP “GET” behavior of our edit action method. This method will be
invoked when the /Dinners/Edit/[id] URL is requested. Our implementation will look like:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(dinner);
}

The code above uses the DinnerRepository to retrieve a Dinner object. It then renders a View template
using the Dinner object. Because we haven’t explicitly passed a template name to the View() helper
method, it will use the convention based default path to resolve the view template:
/Views/Dinners/Edit.aspx.

Let’s now create this view template. We will do this by right-clicking within the Edit method and
selecting the “Add View” context menu command:

Within the “Add View” dialog we’ll indicate that we are passing a Dinner object to our view template as
its model, and choose to auto-scaffold an “Edit” template:

Page 69 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Add” button, Visual Studio will add a new “Edit.aspx” view template file for us within
the “\Views\Dinners” directory. It will also open up the new “Edit.aspx” view template within the code-
editor – populated with an initial “Edit” scaffold implementation like below:

Page 70 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Let’s make a few changes to the default “edit” scaffold generated, and update the edit view template to
have the content below (which removes a few of the properties we don’t want to expose):

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Edit: <%=Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Edit Dinner</h2>

 <%= Html.ValidationSummary("Please correct the errors and try again.") %>

 <% using (Html.BeginForm()) { %>

 <fieldset>
 <p>
 <label for="Title">Dinner Title:</label>
 <%= Html.TextBox("Title") %>
 <%= Html.ValidationMessage("Title", "*") %>
 </p>
 <p>
 <label for="EventDate">Event Date:</label>
 <%= Html.TextBox("EventDate", String.Format("{0:g}",
 Model.EventDate)) %>
 <%= Html.ValidationMessage("EventDate", "*") %>
 </p>
 <p>
 <label for="Description">Description:</label>
 <%= Html.TextArea("Description") %>
 <%= Html.ValidationMessage("Description", "*")%>
 </p>
 <p>
 <label for="Address">Address:</label>
 <%= Html.TextBox("Address") %>
 <%= Html.ValidationMessage("Address", "*") %>
 </p>
 <p>
 <label for="Country">Country:</label>
 <%= Html.TextBox("Country") %>
 <%= Html.ValidationMessage("Country", "*") %>
 </p>
 <p>
 <label for="ContactPhone">Contact Phone #:</label>
 <%= Html.TextBox("ContactPhone") %>
 <%= Html.ValidationMessage("ContactPhone", "*") %>
 </p>

 <p>
 <label for="Latitude">Latitude:</label>
 <%= Html.TextBox("Latitude") %>
 <%= Html.ValidationMessage("Latitude", "*") %>
 </p>
 <p>
 <label for="Longitude">Longitude:</label>
 <%= Html.TextBox("Longitude") %>

Page 71 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <%= Html.ValidationMessage("Longitude", "*") %>
 </p>
 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

When we run the application and request the “/Dinners/Edit/1” URL we will see the following page:

Page 72 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The HTML markup generated by our view looks like below. It is standard HTML – with a <form> element
that performs an HTTP POST to the /Dinners/Edit/1 URL when the “Save” <input type=”submit”/>
button is pushed. A HTML <input type=”text”/> element has been output for each editable property:

Html.BeginForm() and Html.TextBox() Html Helper Methods
Our “Edit.aspx” view template is using several “Html Helper” methods: Html.ValidationSummary(),
Html.BeginForm(), Html.TextBox(), and Html.ValidationMessage(). In addition to generating HTML
markup for us, these helper methods provide built-in error handling and validation support.

Html.BeginForm() helper method

The Html.BeginForm() helper method is what output the HTML <form> element in our markup. In our
Edit.aspx view template you’ll notice that we are applying a C# “using” statement when using this
method. The open curly brace indicates the beginning of the <form> content, and the closing curly
brace is what indicates the end of the </form> element:

<% using (Html.BeginForm()) { %>

 <fieldset>

 <!-- Fields Omitted for Brevity -->

 <p>
 <input type="submit" value="Save" />
 </p>

 </fieldset>

<% } %>

Page 73 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 Alternatively, if you find the “using” statement approach unnatural for a scenario like this, you can use a
Html.BeginForm() and Html.EndForm() combination (which does the same thing):

<% Html.BeginForm(); %>

 <fieldset>
 <!-- Fields Omitted for Brevity -->

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>

<% Html.EndForm(); %>

Calling Html.BeginForm() without any parameters will cause it to output a form element that does an
HTTP-POST to the current request’s URL. That is why our Edit view generates a <form
action=”/Dinners/Edit/1” method=”post”> element. We could have alternatively passed explicit
parameters to Html.BeginForm() if we wanted to post to a different URL.

Html.TextBox() helper method

Our Edit.aspx view uses the Html.TextBox() helper method to output <input type=”text”/> elements:

<%= Html.TextBox("Title") %>

The Html.TextBox() method above takes a single parameter – which is being used to specify both the
id/name attributes of the <input type=”text”/> element to output, as well as the model property to
populate the textbox value from. For example, the Dinner object we passed to the Edit view had a
“Title” property value of “.NET Futures”, and so our Html.TextBox(“Title”) method call output: <input
id=”Title” name=”Title” type=”text” value=”.NET Futures” />.

Alternatively, we can use the first Html.TextBox() parameter to specify the id/name of the element, and
then explicitly pass in the value to use as a second parameter:

<%= Html.TextBox("Title", Model.Title)%>

Often we’ll want to perform custom formatting on the value that is output. The String.Format() static
method built-into .NET is useful for these scenarios. Our Edit.aspx view template is using this to format
the EventDate value (which is of type DateTime) so that it doesn’t show seconds for the time:

<%= Html.TextBox("EventDate", String.Format("{0:g}", Model.EventDate)) %>

A third parameter to Html.TextBox() can optionally be used to output additional HTML attributes. The
code-snippet below demonstrates how to render an additional size=”30” attribute and a
class=”mycssclass” attribute on the <input type=”text”/> element. Note how we are escaping the name
of the class attribute using a “@” character because “class” is a reserved keyword in C#:

<%= Html.TextBox("Title", Model.Title, new { size=30, @class="myclass" })%>

Page 74 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing the HTTP-POST Edit Action Method
We now have the HTTP-GET version of our Edit action method implemented. When a user requests the
/Dinners/Edit/1 URL they receive an HTML page like the following:

Pressing the “Save” button causes a form post to the /Dinners/Edit/1 URL, and submits the HTML
<input> form values using the HTTP POST verb. Let’s now implement the HTTP POST behavior of our
edit action method – which will handle saving the Dinner.

We’ll begin by adding an overloaded “Edit” action method to our DinnersController that has an
“AcceptVerbs” attribute on it that indicates it handles HTTP POST scenarios:

Page 75 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {
 ...
}

When the [AcceptVerbs] attribute is applied to overloaded action methods, ASP.NET MVC automatically
handles dispatching requests to the appropriate action method depending on the incoming HTTP verb.
HTTP POST requests to /Dinners/Edit/[id] URLs will go to the above Edit method, while all other HTTP
verb requests to /Dinners/Edit/[id] URLs will go to the first Edit method we implemented (which did not
have an [AcceptVerbs] attribute).

Side Topic: Why differentiate via HTTP verbs?
You might ask – why are we using a single URL and differentiating its behavior via the HTTP verb? Why
not just have two separate URLs to handle loading and saving edit changes? For example:
/Dinners/Edit/[id] to display the initial form and /Dinners/Save/[id] to handle the form post to save it?

The downside with publishing two separate URLs is that in cases where we post to /Dinners/Save/2,
and then need to redisplay the HTML form because of an input error, the end-user will end up having
the /Dinners/Save/2 URL in their browser’s address bar (since that was the URL the form posted to). If
the end-user bookmarks this redisplayed page to their browser favorites list, or copy/pastes the URL
and emails it to a friend, they will end up saving a URL that won’t work in the future (since that URL
depends on post values).

By exposing a single URL (like: /Dinners/Edit/[id]) and differentiating the processing of it by HTTP verb,
it is safe for end-users to bookmark the edit page and/or send the URL to others.

Retrieving Form Post Values

There are a variety of ways we can access posted form parameters within our HTTP POST “Edit” method.
One simple approach is to just use the Request property on the Controller base class to access the form
collection and retrieve the posted values directly:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 // Retrieve existing dinner
 Dinner dinner = dinnerRepository.GetDinner(id);

 // Update dinner with form posted values
 dinner.Title = Request.Form["Title"];
 dinner.Description = Request.Form["Description"];
 dinner.EventDate = DateTime.Parse(Request.Form["EventDate"]);
 dinner.Address = Request.Form["Address"];
 dinner.Country = Request.Form["Country"];
 dinner.ContactPhone = Request.Form["ContactPhone"];

Page 76 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 // Persist changes back to database
 dinnerRepository.Save();

 // Perform HTTP redirect to details page for the saved Dinner
 return RedirectToAction("Details", new { id = dinner.DinnerID });
}

The above approach is a little verbose, though, especially once we add error handling logic.

A better approach for this scenario is to leverage the built-in UpdateModel() helper method on the
Controller base class . It supports updating the properties of an object we pass it using the incoming
form parameters. It uses reflection to determine the property names on the object, and then
automatically converts and assigns values to them based on the input values submitted by the client.

We could use the UpdateModel() method to implement our HTTP-POST Edit Action using this code:

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id = dinner.DinnerID });
}

We can now visit the /Dinners/Edit/1 URL, and change the title of our Dinner:

Page 77 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Save” button, we’ll perform a form post to our Edit action, and the updated values
will be persisted in the database. We will then be redirected to the Details URL for the Dinner (which
will display the newly saved values):

Handling Edit Errors
Our current HTTP-POST implementation works fine – except when there are errors.

When a user makes a mistake editing a form, we need to make sure that the form is redisplayed with an
informative error message that guides them to fix it. This includes cases where an end-user posts
incorrect input (for example: a malformed date string), as well as cases where the input format is valid
but there is a business rule violation. When errors occur the form should preserve the input data the
user originally entered so that they don’t have to refill their changes manually. This process should
repeat as many times as necessary until the form successfully completes.

ASP.NET MVC includes some nice built-in features that make error handling and form redisplay easy. To
see these features in action let’s update our Edit action method with the following code:

Page 78 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {

 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {

 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }
}

The above code is similar to our previous implementation – except that we are now wrapping a
try/catch error handling block around our work. If an exception occurs either when calling
UpdateModel(), or when we try and save the DinnerRepository (which will raise an exception if the
Dinner object we are trying to save is invalid because of a rule violation), our catch error handling block
will execute. Within it we loop over any rule violations that exist in the Dinner object and add them to a
ModelState object (which we’ll discuss shortly). We then redisplay the view.

To see this working let’s re-run the application, edit a Dinner, and change it to have an empty Title, an
EventDate of “BOGUS”, and use a UK phone number with a country value of USA. When we press the
“Save” button our HTTP POST Edit method will not be able to save the Dinner (because there are errors)
and will redisplay the form:

Page 79 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Page 80 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Our application has a decent error experience. The text elements with the invalid input are highlighted
in red, and validation error messages are displayed to the end user about them. The form is also
preserving the input data the user originally entered – so that they don’t have to refill anything.

How, you might ask, did this occur? How did the Title, EventDate, and ContactPhone textboxes highlight
themselves in red and know to output the originally entered user values? And how did error messages
get displayed in the list at the top? The good news is that this didn’t occur by magic - rather it was
because we used some of the built-in ASP.NET MVC features that make input validation and error
handling scenarios easy.

Understanding ModelState and the Validation HTML Helper Methods
Controller classes have a “ModelState” property collection which provides a way to indicate that errors
exist with a model object being passed to a View. Error entries within the ModelState collection identify
the name of the model property with the issue (for example: “Title”, “EventDate”, or “ContactPhone”),
and allow a human-friendly error message to be specified (for example: “Title is required”).

The UpdateModel() helper method automatically populates the ModelState collection when it
encounters errors while trying to assign form values to properties on the model object. For example,
our Dinner object’s EventDate property is of type DateTime. When the UpdateModel() method was
unable to assign the string value “BOGUS” to it in the scenario above, the UpdateModel() method added
an entry to the ModelState collection indicating an assignment error had occurred with that property.

Developers can also write code to explicitly add error entries into the ModelState collection like we are
doing below within our “catch” error handling block, which is populating the ModelState collection with
entries based on the active Rule Violations in the Dinner object:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }
}

Page 81 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Html Helper Integration with ModelState

HTML helper methods - like Html.TextBox() - check the ModelState collection when rendering output. If
an error for the item exists, they render the user-entered value and a CSS error class.

For example, in our "Edit" view we are using the Html.TextBox() helper method to render the EventDate
of our Dinner object:

<%= Html.TextBox("EventDate", String.Format("{0:g}", Model.EventDate)) %>

When the view was rendered in the error scenario, the Html.TextBox() method checked the ModelState
collection to see if there were any errors associated with the "EventDate" property of our Dinner object.
When it determined that there was an error it rendered the submitted user input ("BOGUS") as the
value, and added a css error class to the <input type="textbox"/> markup it generated:

<input class="input-validation-error" id="EventDate" name="EventDate"
type="text" value="BOGUS" />

You can customize the appearance of the css error class to look however you want. The default CSS
error class – “input-validation-error” – is defined in the \content\site.css stylesheet and looks like below:

.input-validation-error
{
 border: 1px solid #ff0000;
 background-color: #ffeeee;
}

This CSS rule is what caused our invalid input elements to be highlighted like below:

Html .ValidationMessage() Helper Method

The Html.ValidationMessage() helper method can be used to output the ModelState error message
associated with a particular model property:

<%= Html.ValidationMessage("EventDate") %>

The above code outputs: The value ‘BOGUS’ is invalid

The Html.ValidationMessage() helper method also supports a second parameter that allows developers
to override the error text message that is displayed:

<%= Html.ValidationMessage("EventDate", "*") %>

The above code outputs: * instead of the default error text
when an error is present for the EventDate property.

Page 82 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Html.ValidationSummary() Helper Method

The Html.ValidationSummary() helper method can be used to render a summary error message,
accompanied by a list of all detailed error messages in the ModelState collection:

The Html.ValidationSummary() helper method takes an optional string parameter – which defines a
summary error message to display above the list of detailed errors:

<%= Html.ValidationSummary("Please correct the errors and try again.") %>

You can optionally use CSS to override what the error list looks like.

Using a AddRuleViolations Helper Method
Our initial HTTP-POST Edit implementation used a foreach statement within its catch block to loop over
the Dinner object’s Rule Violations and add them to the controller’s ModelState collection:

 catch {
 foreach (var issue in dinner.GetRuleViolations()) {
 ModelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }

 return View(dinner);
 }

We can make this code a little cleaner by adding a “ControllerHelpers” class to the NerdDinner project,
and implement an “AddRuleViolations” extension method within it that adds a helper method to the
ASP.NET MVC ModelStateDictionary class. This extension method can encapsulate the logic necessary
to populate the ModelStateDictionary with a list of RuleViolation errors:

Page 83 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public static class ControllerHelpers {

 public static void AddRuleViolations(this ModelStateDictionary modelState,
 IEnumerable<RuleViolation> errors) {

 foreach (RuleViolation issue in errors) {
 modelState.AddModelError(issue.PropertyName, issue.ErrorMessage);
 }
 }
}

We can then update our HTTP-POST Edit action method to use this extension method to populate the
ModelState collection with our Dinner Rule Violations.

Complete Edit Action Method Implementations
The code below implements all of the controller logic necessary for our Edit scenario:

//
// GET: /Dinners/Edit/2

public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(dinner);
}

//
// POST: /Dinners/Edit/2

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
}

The nice thing about our Edit implementation is that neither our Controller class nor our View template
has to know anything about the specific validation or business rules being enforced by our Dinner
model. We can add additional rules to our model in the future and do not have to make any code
changes to our controller or view in order for them to be supported. This provides us with the flexibility
to easily evolve our application requirements in the future with a minimum of code changes.

Page 84 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing the HTTP-GET Create Action Method
We’ve finished implementing the “Edit” behavior of our DinnersController class. Let’s now move on to
implement the “Create” support on it – which will enable users to add new Dinners.

We’ll begin by implementing the HTTP “GET” behavior of our create action method. This method will be
called when someone visits the /Dinners/Create URL. Our implementation looks like:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };

 return View(dinner);
}

The code above creates a new Dinner object, and assigns its EventDate property to be one week in the
future. It then renders a View that is based on the new Dinner object. Because we haven’t explicitly
passed a name to the View() helper method, it will use the convention based default path to resolve the
view template: /Views/Dinners/Create.aspx.

Let’s now create this view template. We can do this by right-clicking within the Create action method
and selecting the “Add View” context menu command. Within the “Add View” dialog we’ll indicate that
we are passing a Dinner object to the view template, and choose to auto-scaffold a “Create” template:

Page 85 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Add” button, Visual Studio will save a new scaffold-based “Create.aspx” view to the
“\Views\Dinners” directory, and open it up within the IDE:

Let’s make a few changes to the default “create” scaffold file that was generated for us, and modify it up
to look like below:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Host a Dinner
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Host a Dinner</h2>

 <%= Html.ValidationSummary("Please correct the errors and try again.") %>

 <% using (Html.BeginForm()) {%>

 <fieldset>
 <p>
 <label for="Title">Title:</label>
 <%= Html.TextBox("Title") %>
 <%= Html.ValidationMessage("Title", "*") %>
 </p>
 <p>
 <label for="EventDate">Event Date:</label>
 <%= Html.TextBox("EventDate") %>

Page 86 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <%= Html.ValidationMessage("EventDate", "*") %>
 </p>
 <p>
 <label for="Description">Description:</label>
 <%= Html.TextArea("Description") %>
 <%= Html.ValidationMessage("Description", "*") %>
 </p>
 <p>
 <label for="Address">Address:</label>
 <%= Html.TextBox("Address") %>
 <%= Html.ValidationMessage("Address", "*") %>
 </p>
 <p>
 <label for="Country">Country:</label>
 <%= Html.TextBox("Country") %>
 <%= Html.ValidationMessage("Country", "*") %>
 </p>
 <p>
 <label for="ContactPhone">ContactPhone:</label>
 <%= Html.TextBox("ContactPhone") %>
 <%= Html.ValidationMessage("ContactPhone", "*") %>
 </p>
 <p>
 <label for="Latitude">Latitude:</label>
 <%= Html.TextBox("Latitude") %>
 <%= Html.ValidationMessage("Latitude", "*") %>
 </p>
 <p>
 <label for="Longitude">Longitude:</label>
 <%= Html.TextBox("Longitude") %>
 <%= Html.ValidationMessage("Longitude", "*") %>
 </p>
 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>

 <% } %>

</asp:Content>

And now when we run our application and access the “/Dinners/Create” URL within the browser it will
render UI like below from our Create action implementation:

Page 87 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing the HTTP-POST Create Action Method
We have the HTTP-GET version of our Create action method implemented. When a user clicks the
“Save” button it performs a form post to the /Dinners/Create URL, and submits the HTML <input> form
values using the HTTP POST verb.

Let’s now implement the HTTP POST behavior of our create action method. We’ll begin by adding an
overloaded “Create” action method to our DinnersController that has an “AcceptVerbs” attribute on it
that indicates it handles HTTP POST scenarios:

Page 88 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create() {
 ...
}

There are a variety of ways we can access the posted form parameters within our HTTP-POST enabled
“Create” method.

One approach is to create a new Dinner object and then use the UpdateModel() helper method (like we
did with the Edit action) to populate it with the posted form values. We can then add it to our
DinnerRepository, persist it to the database, and redirect the user to our Details action to show the
newly created Dinner using the code below:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create() {

 Dinner dinner = new Dinner();

 try {
 UpdateModel(dinner);

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction("Details", new {id=dinner.DinnerID});
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
}

Alternatively, we can use an approach where we have our Create() action method take a Dinner object
as a method parameter. ASP.NET MVC will then automatically instantiate a new Dinner object for us,
populate its properties using the form inputs, and pass it to our action method:

Page 89 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = "SomeUser";

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction("Details", new {id = dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());
 }
 }

 return View(dinner);
}

Our action method above verifies that the Dinner object has been successfully populated with the form
post values by checking the ModelState.IsValid property. This will return false if there are input
conversion issues (for example: a string of “BOGUS” for the EventDate property), and if there are any
issues our action method redisplays the form.

If the input values are valid, then the action method attempts to add and save the new Dinner to the
DinnerRepository. It wraps this work within a try/catch block and redisplays the form if there are any
business rule violations (which would cause the dinnerRepository.Save() method to raise an exception).

To see this error handling behavior in action, we can request the /Dinners/Create URL and fill out details
about a new Dinner. Incorrect input or values will cause the create form to be redisplayed with the
errors highlighted like below:

Page 90 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Page 91 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Notice how our Create form is honoring the exact same validation and business rules as our Edit form.
This is because our validation and business rules were defined in the model, and were not embedded
within the UI or controller of the application. This means we can later change/evolve our validation or
business rules in a single place and have them apply throughout our application. We will not have to
change any code within either our Edit or Create action methods to automatically honor any new rules
or modifications to existing ones.

When we fix the input values and click the “Save” button again, our addition to the DinnerRepository
will succeed, and a new Dinner will be added to the database. We will then be redirected to the
/Dinners/Details/[id] URL – where we will be presented with details about the newly created Dinner:

Implementing the HTTP-GET Delete Action Method
Let’s now add “Delete” support to our DinnersController.

We’ll begin by implementing the HTTP GET behavior of our delete action method. This method will get
called when someone visits the /Dinners/Delete/[id] URL . Below is the implementation:

Page 92 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// HTTP GET: /Dinners/Delete/1

public ActionResult Delete(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)

 return View("NotFound");
 else
 return View(dinner);
}

The action method attempts to retrieve the Dinner to be deleted. If the Dinner exists it renders a View
based on the Dinner object. If the object doesn’t exist (or has already been deleted) it returns a View
that renders the “NotFound” view template we created earlier for our “Details” action method.

We can create the “Delete” view template by right-clicking within the Delete action method and
selecting the “Add View” context menu command. Within the “Add View” dialog we’ll indicate that we
are passing a Dinner object to our view template as its model, and choose to create an empty template:

When we click the “Add” button, Visual Studio will add a new “Delete.aspx” view template file for us
within our “\Views\Dinners” directory. We’ll add some HTML and code to the template to implement a
delete confirmation screen like below:

Page 93 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

<asp:Content ID="Title" ContentPlaceHolderID="head" runat="server">
 Delete Confirmation: <%=Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

 <h2>
 Delete Confirmation
 </h2>

 <div>
 <p>Please confirm you want to cancel the dinner titled:
 <i> <%=Html.Encode(Model.Title) %>? </i> </p>
 </div>

 <% using (Html.BeginForm()) { %>

 <input name="confirmButton" type="submit" value="Delete" />

 <% } %>

</asp:Content>

 The code above displays the title of the Dinner to be deleted, and outputs a <form> element that does a
POST to the /Dinners/Delete/[id] URL if the end-user clicks the “Delete” button within it.

When we run our application and access the “/Dinners/Delete/[id]” URL for a valid Dinner object it
renders UI like below:

Page 94 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Side Topic: Why are we doing a POST?
You might ask – why did we go through the effort of creating a <form> within our Delete confirmation
screen? Why not just use a standard hyperlink to link to an action method that does the actual delete
operation?

The reason is because we want to be careful to guard against web-crawlers and search engines
discovering our URLs and inadvertently causing data to be deleted when they follow the links. HTTP-
GET based URLs are considered “safe” for them to access/crawl, and they are supposed to not follow
HTTP-POST ones.

A good rule is to make sure you always put destructive or data modifying operations behind HTTP-POST
requests.

Implementing the HTTP-POST Delete Action Method
We now have the HTTP-GET version of our Delete action method implemented which displays a delete
confirmation screen. When an end user clicks the “Delete” button it will perform a form post to the
/Dinners/Dinner/[id] URL.

Let’s now implement the HTTP “POST” behavior of the delete action method using the code below:

//
// HTTP POST: /Dinners/Delete/1

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View("Deleted");
}

The HTTP-POST version of our Delete action method attempts to retrieve the dinner object to delete. If
it can’t find it (because it has already been deleted) it renders our “NotFound” template. If it finds the
Dinner, it deletes it from the DinnerRepository. It then renders a “Deleted” template.

To implement the “Deleted” template we’ll right-click in the action method and choose the “Add View”
context menu. We’ll name our view “Deleted” and have it be an empty template (and not take a
strongly-typed model object). We’ll then add some HTML content to it:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Dinner Deleted
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">

Page 95 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <h2>Dinner Deleted</h2>

 <div>
 <p>Your dinner was successfully deleted.</p>
 </div>
 <div>
 <p>Click for Upcoming Dinners</p>
 </div>
</asp:Content>

And now when we run our application and access the “/Dinners/Delete/[id]” URL for a valid Dinner
object it will render our Dinner delete confirmation screen like below:

When we click the “Delete” button it will perform an HTTP-POST to the /Dinners/Delete/[id] URL, which
will delete the Dinner from our database, and display our “Deleted” view template:

Page 96 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Model Binding Security
We’ve discussed two different ways to use the built-in model-binding features of ASP.NET MVC. The
first using the UpdateModel() method to update properties on an existing model object, and the second
using ASP.NET MVC’s support for passing model objects in as action method parameters. Both of these
techniques are very powerful and extremely useful.

This power also brings with it responsibility. It is important to always be paranoid about security when
accepting any user input, and this is also true when binding objects to form input. You should be careful
to always HTML encode any user-entered values to avoid HTML and JavaScript injection attacks, and be
careful of SQL injection attacks (note: we are using LINQ to SQL for our application, which automatically
encodes parameters to prevent these types of attacks). You should never rely on client-side validation
alone, and always employ server-side validation to guard against hackers attempting to send you bogus
values.

One additional security item to make sure you think about when using the binding features of ASP.NET
MVC is the scope of the objects you are binding. Specifically, you want to make sure you understand the
security implications of the properties you are allowing to be bound, and make sure you only allow
those properties that really should be updatable by an end-user to be updated.

By default, the UpdateModel() method will attempt to update all properties on the model object that
match incoming form parameter values. Likewise, objects passed as action method parameters also by
default can have all of their properties set via form parameters.

Locking down binding on a per-usage basis

You can lock down the binding policy on a per-usage basis by providing an explicit “include list” of
properties that can be updated. This can be done by passing an extra string array parameter to the
UpdateModel() method like below:

string[] allowedProperties = new[]{ "Title", "Description",
 "ContactPhone", "Address",
 "EventDate", "Latitude",
 "Longitude"};

UpdateModel(dinner, allowedProperties);

Objects passed as action method parameters also support a [Bind] attribute that enables an “include
list” of allowed properties to be specified like below:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create([Bind(Include="Title,Address")] Dinner dinner) {
 ...
}

Page 97 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Locking down binding on a type basis

You can also lock down the binding rules on a per-type basis. This allows you to specify the binding rules
once, and then have them apply in all scenarios (including both UpdateModel and action method
parameter scenarios) across all controllers and action methods.

You can customize the per-type binding rules by adding a [Bind] attribute onto a type, or by registering it
within the Global.asax file of the application (useful for scenarios where you don’t own the type). You
can then use the Bind attribute’s Include and Exclude properties to control which properties are
bindable for the particular class or interface.

We’ll use this technique for the Dinner class in our NerdDinner application, and add a [Bind] attribute to
it that restricts the list of bindable properties to the following:

[Bind(Include="Title,Description,EventDate,Address,Country,ContactPhone,Latitude,Longi
tude")]
public partial class Dinner {

}

Notice we are not allowing the RSVPs collection to be manipulated via binding, nor are we allowing the
DinnerID or HostedBy properties to be set via binding. For security reasons we’ll instead only
manipulate these particular properties using explicit code within our action methods.

CRUD Wrap-Up
ASP.NET MVC includes a number of built-in features that help with implementing form posting
scenarios. We used a variety of these features to provide CRUD UI support on top of our
DinnerRepository.

We are using a model-focused approach to implement our application. This means that all our
validation and business rule logic is defined within our model layer – and not within our controllers or
views. Neither our Controller class nor our View templates know anything about the specific business
rules being enforced by our Dinner model class.

This will keep our application architecture clean and make it easier to test. We can add additional
business rules to our model layer in the future and not have to make any code changes to our Controller
or View in order for them to be supported. This is going to provide us with a great deal of agility to
evolve and change our application in the future.

Our DinnersController now enables Dinner listings/details, as well as create, edit and delete support.
The complete code for the class can be found below:

Page 98 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/

 public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();
 return View(dinners);
 }

 //
 // GET: /Dinners/Details/2

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View(dinner);
 }

 //
 // GET: /Dinners/Edit/2

 public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);
 return View(dinner);
 }

 //
 // POST: /Dinners/Edit/2

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Edit(int id, FormCollection formValues) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id = dinner.DinnerID });
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());

 return View(dinner);
 }
 }

Page 99 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 //
 // GET: /Dinners/Create

 public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };
 return View(dinner);
 }

 //
 // POST: /Dinners/Create

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = "SomeUser";

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction("Details", new{id=dinner.DinnerID});
 }
 catch {
 ModelState.AddRuleViolations(dinner.GetRuleViolations());
 }
 }

 return View(dinner);
 }

 //
 // HTTP GET: /Dinners/Delete/1

 public ActionResult Delete(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View(dinner);
 }

Page 100 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 //
 // HTTP POST: /Dinners/Delete/1

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Delete(int id, string confirmButton) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");

 dinnerRepository.Delete(dinner);
 dinnerRepository.Save();

 return View("Deleted");
 }
}

Page 101 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

ViewData and ViewModel
We’ve covered a number of form post scenarios, and discussed how to implement create, update and
delete (CRUD) support. We’ll now take our DinnersController implementation further and enable
support for richer form editing scenarios. While doing this we’ll discuss two approaches that can be
used to pass data from controllers to views: ViewData and ViewModel.

Passing Data from Controllers to View-Templates
One of the defining characteristics of the MVC pattern is the strict “separation of concerns” it helps
enforce between the different components of an application. Models, Controllers and Views each have
well defined roles and responsibilities, and they communicate amongst each other in well defined ways.
This helps promote testability and code reuse.

When a Controller class decides to render an HTML response back to a client, it is responsible for
explicitly passing to the view template all of the data needed to render the response. View templates
should never perform any data retrieval or application logic – and should instead limit themselves to
only have rendering code that is driven off of the model/data passed to it by the controller.

Right now the model data being passed by our DinnersController class to our view templates is simple
and straight-forward – a list of Dinner objects in the case of Index(), and a single Dinner object in the
case of Details(), Edit(), Create() and Delete(). As we add more UI capabilities to our application, we are
often going to need to pass more than just this data to render HTML responses within our view
templates. For example, we might want to change the “Country” field within our Edit and Create views
from being an HTML textbox to a dropdownlist. Rather than hard-code the dropdown list of country
names in the view template, we might want to generate it from a list of supported countries that we
populate dynamically. We will need a way to pass both the Dinner object and the list of supported
countries from our controller to our view templates.

Let’s look at two ways we can accomplish this.

Using the ViewData Dictionary
The Controller base class exposes a “ViewData” dictionary property that can be used to pass additional
data items from Controllers to Views.

For example, to support the scenario where we want to change the “Country” textbox within our Edit
view from being an HTML textbox to a dropdownlist, we can update our Edit() action method to pass (in
addition to a Dinner object) a SelectList object that can be used as the model of a countries
dropdownlist.

Page 102 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 ViewData["Countries"] = new SelectList(PhoneValidator.Countries,
 dinner.Country);

 return View(dinner);
}

The constructor of the SelectList above is accepting a list of countries to populate the drop-downlist
with, as well as the currently selected value.

We can then update our Edit.aspx view template to use the Html.DropDownList() helper method instead
of the Html.TextBox() helper method we used previously:

<%= Html.DropDownList("Country", ViewData["Countries"] as SelectList) %>

The Html.DropDownList() helper method above takes two parameters. The first is the name of the
HTML form element to output. The second is the “SelectList” model we passed via the ViewData
dictionary. We are using the C# “as” keyword to cast the type within the dictionary as a SelectList.

And now when we run our application and access the /Dinners/Edit/1 URL within our browser we’ll see
that our edit UI has been updated to display a dropdownlist of countries instead of a textbox:

Page 103 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Because we also render the Edit view template from the HTTP-POST Edit method (in scenarios when
errors occur), we’ll want to make sure that we also update this method to add the SelectList to
ViewData when the view template is rendered in error scenarios:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 ViewData["countries"] = new SelectList(PhoneValidator.Countries,
 dinner.Country);

 return View(dinner);
 }
}

And now our DinnersController edit scenario supports a DropDownList.

Using a ViewModel Pattern
The ViewData dictionary approach has the benefit of being fairly fast and easy to implement. Some
developers don’t like using string-based dictionaries, though, since typos can lead to errors that will not
be caught at compile-time. The un-typed ViewData dictionary also requires using the “as” operator or
casting when using a strongly-typed language like C# in a view template.

An alternative approach that we could use is one often referred to as the “ViewModel” pattern. When
using this pattern we create strongly-typed classes that are optimized for our specific view scenarios,
and which expose properties for the dynamic values/content needed by our view templates. Our
controller classes can then populate and pass these view-optimized classes to our view template to use.
This enables type-safety, compile-time checking, and editor intellisense within view templates.

For example, to enable dinner form editing scenarios we can create a “DinnerFormViewModel” class like
below that exposes two strongly-typed properties: a Dinner object, and the SelectList model needed to
populate the countries dropdownlist:

Page 104 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public class DinnerFormViewModel {

 // Properties
 public Dinner Dinner { get; private set; }
 public SelectList Countries { get; private set; }

 // Constructor
 public DinnerFormViewModel(Dinner dinner) {
 Dinner = dinner;
 Countries = new SelectList(PhoneValidator.Countries,
 dinner.Country);
 }
}

We can then update our Edit() action method to create the DinnerFormViewModel using the Dinner
object we retrieve from our repository, and then pass it to our view template:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 return View(new DinnerFormViewModel(dinner));
}

We’ll then update our view template so that it expects a “DinnerFormViewModel” instead of a “Dinner”
object by changing the “inherits” attribute at the top of the edit.aspx page like so:

Inherits="System.Web.Mvc.ViewPage<NerdDinner.Controllers.DinnerFormViewModel>

Once we do this, the intellisense of the “Model” property within our view template will be updated to
reflect the object model of the DinnerFormViewModel type we are passing it:

Page 105 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can then update our view code to work off of it. Notice below how we are not changing the names
of the input elements we are creating (the form elements will still be named “Title”, “Country”) – but we
are updating the HTML Helper methods to retrieve the values using the DinnerFormViewModel class:

<p>
 <label for="Title">Dinner Title:</label>
 <%= Html.TextBox("Title", Model.Dinner.Title) %>
 <%= Html.ValidationMessage("Title", "*") %>
</p>
<p>
 <label for="Country">Country:</label>
 <%= Html.DropDownList("Country", Model.Countries) %>
 <%= Html.ValidationMessage("Country", "*") %>
</p>

We’ll also update our Edit post method to use the DinnerFormViewModel class when rendering errors:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 return View(new DinnerFormViewModel(dinner));
 }
}

Page 106 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can also update our Create() action methods to re-use the exact same DinnerFormViewModel class
to enable the countries DropDownList within those as well. Below is the HTTP-GET implementation:

//
// GET: /Dinners/Create

public ActionResult Create() {

 Dinner dinner = new Dinner() {
 EventDate = DateTime.Now.AddDays(7)
 };

 return View(new DinnerFormViewModel(dinner));
}

Below is the implementation of the HTTP-POST Create method:

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {

 try {
 dinner.HostedBy = "SomeUser";

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinnerToCreate.GetRuleViolations());
 }
 }

 return View(new DinnerFormViewModel(dinnerToCreate));
}

And now both our Edit and Create screens support drop-downlists for picking the country.

Page 107 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Custom-shaped ViewModel classes
In the scenario above, our DinnerFormViewModel class directly exposes the Dinner model object as a
property, along with a supporting SelectList model property. This approach works fine for scenarios
where the HTML UI we want to create within our view template corresponds relatively closely to our
domain model objects.

For scenarios where this isn’t the case, one option that you can use is to create a custom-shaped
ViewModel class whose object model is more optimized for consumption by the view – and which might
look completely different from the underlying domain model object. For example, it could potentially
expose different property names and/or aggregate properties collected from multiple model objects.

Custom-shaped ViewModel classes can be used both to pass data from controllers to views to render, as
well as to help handle form data posted back to a controller’s action method. For this later scenario,
you might have the action method update a ViewModel object with the form-posted data, and then use
the ViewModel instance to map or retrieve an actual domain model object.

Custom-shaped ViewModel classes can provide a great deal of flexibility, and are something to
investigate any time you find the rendering code within your view templates or the form-posting code
inside your action methods starting to get too complicated. This is often a sign that your domain models
don’t cleanly correspond to the UI you are generating, and that an intermediate custom-shaped
ViewModel class can help.

Page 108 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Partials and Master Pages
One of the design philosophies ASP.NET MVC embraces is the “Do Not Repeat Yourself” principle
(commonly referred to as “DRY”). A DRY design helps eliminate the duplication of code and logic, which
ultimately makes applications faster to build and easier to maintain.

We’ve already seen the DRY principle applied in several of our NerdDinner scenarios. A few examples:
our validation logic is implemented within our model layer, which enables it to be enforced across both
edit and create scenarios in our controller; we are re-using the “NotFound” view template across the
Edit, Details and Delete action methods; we are using a convention- naming pattern with our view
templates, which eliminates the need to explicitly specify the name when we call the View() helper
method; and we are re-using the DinnerFormViewModel class for both Edit and Create action scenarios.

Let’s now look at ways we can apply the “DRY Principle” within our view templates to eliminate code
duplication there as well.

Re-visiting our Edit and Create View Templates
Currently we are using two different view templates – “Edit.aspx” and “Create.aspx” – to display our
Dinner form UI. A quick visual comparison of them highlights how similar they are. Below is what the
create form looks like:

Page 109 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And here is what our “Edit” form looks like:

Not much of a difference is there? Other than the title and header text, the form layout and input
controls are identical.

If we open up the “Edit.aspx” and “Create.aspx” view templates we’ll find that they contain identical
form layout and input control code. This duplication means we end up having to make changes twice
anytime we introduce or change a new Dinner property - which is not good.

Using Partial View Templates
ASP.NET MVC supports the ability to define “partial view” templates that can be used to encapsulate
view rendering logic for a sub-portion of a page. “Partials” provide a useful way to define view
rendering logic once, and then re-use it in multiple places across an application.

To help “DRY-up” our Edit.aspx and Create.aspx view template duplication, we can create a partial view
template named “DinnerForm.ascx” that encapsulates the form layout and input elements common to
both. We’ll do this by right-clicking on our /Views/Dinners directory and choosing the “Add->View”
menu command:

Page 110 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will display the “Add View” dialog. We’ll name the new view we want to create “DinnerForm”,
select the “Create a partial view” checkbox within the dialog, and indicate that we will pass it a
DinnerFormViewModel class:

Page 111 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “Add” button, Visual Studio will create a new “DinnerForm.ascx” view template for us
within the “\Views\Dinners” directory.

We can then copy/paste the duplicate form layout / input control code from our Edit.aspx/ Create.aspx
view templates into our new “DinnerForm.ascx” partial view template:

<%= Html.ValidationSummary("Please correct the errors and try again.") %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <p>
 <label for="Title">Dinner Title:</label>
 <%= Html.TextBox("Title", Model.Dinner.Title) %>
 <%= Html.ValidationMessage("Title", "*") %>
 </p>
 <p>
 <label for="EventDate">Event Date:</label>
 <%= Html.TextBox("EventDate", Model.Dinner.EventDate) %>
 <%= Html.ValidationMessage("EventDate", "*") %>
 </p>
 <p>
 <label for="Description">Description:</label>
 <%= Html.TextArea("Description", Model.Dinner.Description) %>
 <%= Html.ValidationMessage("Description", "*")%>
 </p>
 <p>
 <label for="Address">Address:</label>
 <%= Html.TextBox("Address", Model.Dinner.Address) %>
 <%= Html.ValidationMessage("Address", "*") %>
 </p>
 <p>
 <label for="Country">Country:</label>
 <%= Html.DropDownList("Country", Model.Countries) %>
 <%= Html.ValidationMessage("Country", "*") %>
 </p>
 <p>
 <label for="ContactPhone">Contact Phone #:</label>
 <%= Html.TextBox("ContactPhone", Model.Dinner.ContactPhone) %>
 <%= Html.ValidationMessage("ContactPhone", "*") %>
 </p>

 <p>
 <input type="submit" value="Save" />
 </p>
 </fieldset>

<% } %>

We can then update our Edit and Create view templates to call the DinnerForm partial template and
eliminate the form duplication. We can do this by calling Html.RenderPartial(“DinnerForm”) within our
view templates:

Page 112 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Create.aspx

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Host a Dinner
</asp:Content>

<asp:Content ID="Create" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Host a Dinner</h2>

 <% Html.RenderPartial("DinnerForm"); %>

</asp:Content>

Edit.aspx

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 Edit: <%=Html.Encode(Model.Dinner.Title) %>
</asp:Content>

<asp:Content ID="Edit" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Edit Dinner</h2>

 <% Html.RenderPartial("DinnerForm"); %>

</asp:Content>

You can explicitly qualify the path of the partial template you want when calling Html.RenderPartial (for
example: ~/Views/Dinners/DinnerForm.ascx"). In our code above, though, we are taking advantage of
the convention-based naming pattern within ASP.NET MVC, and just specifying “DinnerForm” as the
name of the partial to render. When we do this ASP.NET MVC will look first in the convention-based
views directory (for DinnersController this would be /Views/Dinners). If it doesn’t find the partial
template there it will then look for it in the /Views/Shared directory.

When Html.RenderPartial() is called with just the name of the partial view, ASP.NET MVC will pass to the
partial view the same Model and ViewData dictionary objects used by the calling view template.
Alternatively, there are overloaded versions of Html.RenderPartial() that enable you to pass an alternate
Model object and/or ViewData dictionary for the partial view to use. This is useful for scenarios where
you only want to pass a subset of the full Model/ViewModel.

Side Topic: Why <% %> instead of <%= %>?
One of the subtle things you might have noticed with the code above is that we are using a <% %>
block instead of a <%= %> block when calling Html.RenderPartial().

<%= %> blocks in ASP.NET indicate that a developer wants to render a specified value (for example:
<%= “Hello” %> would render “Hello”). <% %> blocks instead indicate that the developer wants to
execute code, and that any rendered output within them must be done explicitly (for example: <%
Response.Write(“Hello”); %>.

Page 113 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The reason we are using a <% %> block with our Html.RenderPartial code above is because the
Html.RenderPartial() method doesn’t return a string, and instead outputs the content directly to the
calling view template’s output stream. It does this for performance efficiency reasons, and by doing so
it avoids the need to create a (potentially very large) temporary string object. This reduces memory
usage and improves overall application throughput.

One common mistake when using Html.RenderPartial() is to forget to add a semi-colon at the end of
the call when it is within a <% %> block. For example, this code will cause a compiler error:

 <% Html.RenderPartial(“DinnerForm”) %>

You instead need to write:

 <% Html.RenderPartial(“DinnerForm”); %>

This is because <% %> blocks are self-contained code statements, and when using C# code statements
need to be terminated with a semi-colon.

Using Partial View Templates to Clarify Code
We created the “DinnerForm” partial view template to avoid duplicating view rendering logic in multiple
places. This is the most common reason to create partial view templates.

Sometimes it still makes sense to create partial views even when they are only being called in a single
place. Very complicated view templates can often become much easier to read when their view
rendering logic is extracted and partitioned into one or more well named partial templates.

For example, consider the below code-snippet from the Site.master file in our project (which we will be
looking at shortly). The code is relatively straight-forward to read – partly because the logic to display a
login/logout link at the top right of the screen is encapsulated within the “LogOnUserControl” partial:

<div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>

 <div id="logindisplay">
 <% Html.RenderPartial("LogOnUserControl"); %>
 </div>

 <div id="menucontainer">

 <ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("About", "About", "Home")%>

 </div>
</div>

Page 114 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Whenever you find yourself getting confused trying to understand the html/code markup within a view-
template, consider whether it wouldn’t be clearer if some of it was extracted and refactored into well-
named partial views.

Master Pages
In addition to supporting partial views, ASP.NET MVC also supports the ability to create “master page”
templates that can be used to define the common layout and top-level html of a site. Content
placeholder controls can then be added to the master page to identify replaceable regions that can be
overridden or “filled in” by views. This provides a very effective (and DRY) way to apply a common
layout across an application.

By default, new ASP.NET MVC projects have a master page template automatically added to them. This
master page is named “Site.master” and lives within the \Views\Shared\ folder:

The default Site.master file looks like below. It defines the outer html of the site, along with a menu for
navigation at the top. It contains two replaceable content placeholder controls – one for the title, and
the other for where the primary content of a page should be replaced:

Page 115 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" /></title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>

<body>
 <div class="page">

 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>

 <div id="logindisplay">
 <% Html.RenderPartial("LogOnUserControl"); %>
 </div>

 <div id="menucontainer">

 <ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("About", "About", "Home")%>

 </div>
 </div>

 <div id="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
 </div>
 </div>
</body>
</html>

All of the view templates we’ve created for our NerdDinner application (“List”, “Details”, “Edit”,
“Create”, “NotFound”, etc) have been based on this Site.master template. This is indicated via the
“MasterPageFile” attribute that was added by default to the top <% @ Page %> directive when we
created our views using the “Add View” dialog:

<%@ Page Language="C#"
Inherits="System.Web.Mvc.ViewPage<NerdDinner.Controllers.DinnerViewModel>"
MasterPageFile="~/Views/Shared/Site.Master" %>

What this means is that we can change the Site.master content, and have the changes automatically be
applied and used when we render any of our view templates.

Let’s update our Site.master’s header section so that the header of our application is “NerdDinner”
instead of “My MVC Application”. Let’s also update our navigation menu so that the first tab is “Find a

Page 116 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Dinner” (handled by the HomeController’s Index() action method), and let’s add a new tab called “Host a
Dinner” (handled by the DinnersController’s Create() action method):

<div id="header">
 <div id="title">
 <h1>NerdDinner</h1>
 </div>

 <div id="logindisplay">
 <% Html.RenderPartial("LogOnUserControl"); %>
 </div>

 <div id="menucontainer">
 <ul id="menu">
 <%= Html.ActionLink("Find Dinner", "Index", "Home")%>
 <%= Html.ActionLink("Host Dinner", "Create", "Dinners")%>
 <%= Html.ActionLink("About", "About", "Home")%>

 </div>
</div>

When we save the Site.master file and refresh our browser we’ll see our header changes show up across
all views within our application. For example:

Page 117 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And with the /Dinners/Edit/[id] URL:

Partials and master pages provide very flexible options that enable you to cleanly organize views. You’ll
find that they help you avoid duplicating view content/ code, and make your view templates easier to
read and maintain.

Page 118 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Paging Support
If our site is successful, it will have thousands of upcoming dinners. We need to make sure that our UI
scales to handle all of these dinners, and allows users to browse them. To enable this, we’ll add paging
support to our /Dinners URL so that instead of displaying 1000s of dinners at once, we’ll only display 10
upcoming dinners at a time - and allow end-users to page back and forward through the entire list in an
SEO friendly way.

Index() Action Method Recap
The Index() action method within our DinnersController class currently looks like below:

//
// GET: /Dinners/

public ActionResult Index() {

 var dinners = dinnerRepository.FindUpcomingDinners().ToList();

 return View(dinners);
}

When a request is made to the /Dinners URL, it retrieves a list of all upcoming dinners and then renders
a listing of all of them out:

Page 119 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Understanding IQueryable<T>
IQueryable<T> is an interface that was introduced with LINQ in .NET 3.5. It enables powerful “deferred
execution” scenarios that we can take advantage of to implement paging support.

In our DinnerRepository below we are returning an IQueryable<Dinner> sequence from our
FindUpcomingDinners() method:

public class DinnerRepository {

 private NerdDinnerDataContext db = new NerdDinnerDataContext();

 //
 // Query Methods

 public IQueryable<Dinner> FindUpcomingDinners() {
 return from dinner in db.Dinners
 where dinner.EventDate > DateTime.Now
 orderby dinner.EventDate
 select dinner;
 }

The IQueryable<Dinner> object returned by our FindUpcomingDinners() method encapsulates a query
to retrieve Dinner objects from our database using LINQ to SQL. Importantly, it won’t execute the query
against the database until we attempt to access/iterate over the data in the query, or until we call the
ToList()method on it. The code calling our FindUpcomingDinners() method can optionally choose to add
additional “chained” operations/filters to the IQueryable<Dinner> object before executing the query.
LINQ to SQL is then smart enough to execute the combined query against the database when the data is
requested.

To implement paging logic we can update our Index() action method so that it applies additional “Skip”
and “Take” operators to the returned IQueryable<Dinner> sequence before calling ToList() on it:

//
// GET: /Dinners/

public ActionResult Index() {

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip(10).Take(20).ToList();

 return View(paginatedDinners);
}

The above code skips over the first 10 upcoming dinners in the database, and then returns back 20
dinners. LINQ to SQL is smart enough to construct an optimized SQL query that performs this skipping
logic in the SQL database – and not in the web-server. This means that even if we have millions of
upcoming Dinners in the database, only the 10 we want will be retrieved as part of this request (making
it efficient and scalable).

Page 120 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Adding a “page” value to the URL
Instead of hard-coding a specific page range, we’ll want our URLs to include a “page” parameter that
indicates which Dinner range a user is requesting.

Using a Querystring value

The code below demonstrates how we can update our Index() action method to support a querystring
parameter and enable URLs like /Dinners?page=2:

//
// GET: /Dinners/
// /Dinners?page=2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
 .Take(pageSize)

.ToList();

 return View(paginatedDinners);
}

The Index() action method above has a parameter named “page”. The parameter is declared as a
nullable integer. This means that the /Dinners?page=2 URL will cause a value of “2” to be passed as the
parameter value. The /Dinners URL (without a querystring value) will cause a null value to be passed.

We are multiplying the page value by the page size (in this case 10 rows) to determine how many
dinners to skip over. We are using the C# “coalescing” operator (??) which is useful when dealing with
nullable types. The code above assigns page the value of 0 if the page parameter is null.

Using Embedded URL values

An alternative to using a querystring value would be to embed the page parameter within the actual
URL itself. For example: /Dinners/Page/2 or /Dinners/2. ASP.NET MVC includes a powerful URL routing
engine that makes it easy to support scenarios like this.

We can register custom routing rules that map any incoming URL or URL format to any controller class
or action method we want. All we need to-do is to open the Global.asax file within our project:

Page 121 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And then register a new mapping rule using the MapRoute() helper method like the first call to
routes.MapRoute() below:

public void RegisterRoutes(RouteCollection routes) {

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "UpcomingDinners",
 "Dinners/Page/{page}",
 new { controller = "Dinners", action = "Index" }
);

 routes.MapRoute(
 "Default", // Route name
 "{controller}/{action}/{id}", // URL with params
 new { controller="Home", action="Index", id="" } // Param defaults
);
}

void Application_Start() {
 RegisterRoutes(RouteTable.Routes);
}

Above we are registering a new routing rule named “UpcomingDinners”. We are indicating it has the
URL format “Dinners/Page/{page}” – where {page} is a parameter value embedded within the URL. The
third parameter to the MapRoute() method indicates that we should map URLs that match this format
to the Index() action method on the DinnersController class.

Page 122 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can use the exact same Index() code we had before with our Querystring scenario – except now our
“page” parameter will come from the URL and not the querystring:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = upcomingDinners.Skip((page ?? 0) * pageSize)
 .Take(pageSize)

.ToList();

 return View(paginatedDinners);
}

And now when we run the application and type in /Dinners we’ll see the first 10 upcoming dinners:

And when we type in /Dinners/Page/1 we’ll see the next page of dinners:

Page 123 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Adding page navigation UI
The last step to complete our paging scenario will be to implement “next” and “previous” navigation UI
within our view template to enable users to easily skip over the Dinner data.

To implement this correctly, we’ll need to know the total number of Dinners in the database, as well as
how many pages of data this translates to. We’ll then need to calculate whether the currently
requested “page” value is at the beginning or end of the data, and show or hide the “previous” and
“next” UI accordingly. We could implement this logic within our Index() action method. Alternatively
we can add a helper class to our project that encapsulates this logic in a more re-usable way.

Below is a simple “PaginatedList” helper class that derives from the List<T> collection class built-into the
.NET Framework. It implements a re-usable collection class that can be used to paginate any sequence
of IQueryable data. In our NerdDinner application we’ll have it work over IQueryable<Dinner> results,
but it could just as easily be used against IQueryable<Product> or IQueryable<Customer> results in
other application scenarios:

public class PaginatedList<T> : List<T> {

 public int PageIndex { get; private set; }
 public int PageSize { get; private set; }
 public int TotalCount { get; private set; }
 public int TotalPages { get; private set; }

 public PaginatedList(IQueryable<T> source, int pageIndex, int pageSize) {
 PageIndex = pageIndex;
 PageSize = pageSize;
 TotalCount = source.Count();

Page 124 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 TotalPages = (int) Math.Ceiling(TotalCount / (double)PageSize);

 this.AddRange(source.Skip(PageIndex * PageSize).Take(PageSize));
 }

 public bool HasPreviousPage {
 get {
 return (PageIndex > 0);
 }
 }

 public bool HasNextPage {
 get {
 return (PageIndex+1 < TotalPages);
 }
 }
}

Notice above how it calculates and then exposes properties like “PageIndex”, “PageSize”, “TotalCount”,
and “TotalPages”. It also then exposes two helper properties “HasPreviousPage” and “HasNextPage”
that indicate whether the page of data in the collection is at the beginning or end of the original
sequence. The above code will cause two SQL queries to be run - the first to retrieve the count of the
total number of Dinner objects (this doesn’t return the objects – rather it performs a “SELECT COUNT”
statement that returns an integer), and the second to retrieve just the rows of data we need from our
database for the current page of data.

We can then update our DinnersController.Index() helper method to create a PaginatedList<Dinner>
from our DinnerRepository.FindUpcomingDinners() result, and pass it to our view template:

//
// GET: /Dinners/
// /Dinners/Page/2

public ActionResult Index(int? page) {

 const int pageSize = 10;

 var upcomingDinners = dinnerRepository.FindUpcomingDinners();
 var paginatedDinners = new PaginatedList<Dinner>(upcomingDinners,
 page ?? 0,
 pageSize);

 return View(paginatedDinners);
}

We can then update the \Views\Dinners\Index.aspx view template to inherit from
ViewPage<NerdDinner.Helpers.PaginatedList<Dinner>> instead of ViewPage<IEnumerable<Dinner>>,
and then add the following code to the bottom of our view-template to show or hide next and previous
navigation UI:

Page 125 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

<% if (Model.HasPreviousPage) { %>

 <%= Html.RouteLink("<<<",
 "UpcomingDinners",
 new { page=(Model.PageIndex-1) }) %>

<% } %>

<% if (Model.HasNextPage) { %>

 <%= Html.RouteLink(">>>",
 "UpcomingDinners",
 new { page = (Model.PageIndex + 1) })%>

<% } %>

Notice above how we are using the Html.RouteLink() helper method to generate our hyperlinks. This
method is similar to the Html.ActionLink() helper method we’ve used previously. The difference is that
we are generating the URL using the “UpcomingDinners” routing rule we setup within our Global.asax
file. This ensures that we’ll generate URLs to our Index() action method that have the format:
/Dinners/Page/{page} – where the {page} value is a variable we are providing above based on the
current PageIndex.

And now when we run our application again we’ll see 10 dinners at a time in our browser:

Page 126 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We also have <<< and >>> navigation UI at the bottom of the page that allows us to skip forwards and
backwards over our data using search engine accessible URLs:

Side Topic: Understanding the implications of IQueryable<T>
IQueryable<T> is a very powerful feature that enables a variety of interesting deferred execution
scenarios (like paging and composition based queries). As with all powerful features, you want to be
careful with how you use it and make sure it is not abused.

It is important to recognize that returning an IQueryable<T> result from your repository enables calling
code to append on chained operator methods to it, and so participate in the ultimate query execution.
If you do not want to provide calling code this ability, then you should return back IList<T>, List<T> or
IEnumerable<T> results - which contain the results of a query that has already executed.

For pagination scenarios this would require you to push the actual data pagination logic into the
repository method being called. In this scenario we might update our FindUpcomingDinners() finder
method to have a signature that either returned a PaginatedList:

 PaginatedList< Dinner> FindUpcomingDinners(int pageIndex, int pageSize) { }

Or return back an IList<Dinner>, and use a “totalCount” out param to return the total count of Dinners:

 IList<Dinner> FindUpcomingDinners(int pageIndex, int pageSize, out int totalCount) { }

Page 127 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Authentication and Authorization
Right now our NerdDinner application grants anyone visiting the site the ability to create and edit the
details of any dinner. Let’s change this so that users need to register and login to the site to create new
dinners, and add a restriction so that only the user who is hosting a dinner can edit it later.

To enable this we’ll use authentication and authorization to secure our application.

Understanding Authentication and Authorization
Authentication is the process of identifying and validating the identity of a client accessing an
application. Put more simply, it is about identifying “who” the end-user is when they visit a website.

ASP.NET supports multiple ways to authenticate browser users. For Internet web applications, the most
common authentication approach used is called “Forms Authentication”. Forms Authentication enables
a developer to author an HTML login form within their application, and then validate the
username/password an end-user submits against a database or other password credential store. If the
username/password combination is correct, the developer can then ask ASP.NET to issue an encrypted
HTTP cookie to identify the user across future requests. We’ll be using forms authentication with our
NerdDinner application.

Authorization is the process of determining whether an authenticated user has permission to access a
particular URL/resource or to perform some action. For example, within our NerdDinner application
we’ll want to authorize that only users who are logged in can access the /Dinners/Create URL and create
new Dinners. We’ll also want to add authorization logic so that only the user who is hosting a dinner
can edit it – and deny edit access to all other users.

Forms Authentication and the AccountController
The default Visual Studio project template for ASP.NET MVC automatically enables forms authentication
when new ASP.NET MVC applications are created. It also automatically adds a pre-built account login
implementation to the project – which makes it really easy to integrate security within a site.

The default Site.master master page displays a “Log On” link at the top-right of the site when the user
accessing it is not authenticated:

Page 128 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Clicking the “Log On” link takes a user to the /Account/LogOn URL:

Page 129 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Visitors who haven’t registered can do so by clicking the “Register” link – which will take them to the
/Account/Register URL and allow them to enter account details:

Clicking the “Register” button will create a new user within the ASP.NET Membership system, and
authenticate the user onto the site using forms authentication.

When a user is logged-in, the Site.master changes the top-right of the page to output a “Welcome
[username]!” message and renders a “Log Off” link instead of a “Log On” one. Clicking the “Log Off” link
logs out the user:

Page 130 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The above login, logout, and registration functionality is implemented within the AccountController class
that was added to our project by VS when it created it. The UI for the AccountController is implemented
using view templates within the \Views\Account directory:

Page 131 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The AccountController class uses the ASP.NET Forms Authentication system to issue encrypted
authentication cookies, and the ASP.NET Membership API to store and validate usernames/passwords.
The ASP.NET Membership API is extensible and enables any password credential store to be used.
ASP.NET ships with built-in membership provider implementations that store username/passwords
within a SQL database, or within Active Directory.

We can configure which membership provider our NerdDinner application should use by opening the
“web.config” file at the root of the project and looking for the <membership> section within it. The
default web.config added when the project was created registers the SQL membership provider, and
configures it to use a connection-string named “ApplicationServices” to specify the database location.

The default “ApplicationServices” connection string (which is specified within the <connectionStrings>
section of the web.config file) is configured to use SQL Express. It points to a SQL Express database
named “ASPNETDB.MDF” under the application’s “App_Data” directory. If this database doesn’t exist
the first time the Membership API is used within the application, ASP.NET will automatically create the
database and provision the appropriate membership database schema within it:

Page 132 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

If instead of using SQL Express we wanted to use a full SQL Server instance (or connect to a remote
database), all we’d need to-do is to update the “ApplicationServices” connection string within the
web.config file and make sure that the appropriate membership schema has been added to the
database it points at. You can run the “aspnet_regsql.exe” utility within the
\Windows\Microsoft.NET\Framework\v2.0.50727\ directory to add the appropriate schema for
membership and the other ASP.NET application services to a database.

Authorizing the /Dinners/Create URL using the [Authorize] filter
We didn’t have to write any code to enable a secure authentication and account management
implementation for the NerdDinner application. Users can register new accounts with our application,
and login/logout of the site. And now we can add authorization logic to the application, and use the
authentication status and username of visitors to control what they can and can’t do within the site.

Let’s begin by adding authorization logic to the “Create” action methods of our DinnersController class.
Specifically, we will require that users accessing the /Dinners/Create URL must be logged in. If they
aren’t logged in we’ll redirect them to the login page so that they can sign-in.

Implementing this logic is pretty easy. All we need to-do is to add an [Authorize] filter attribute to our
Create action methods like so:

//
// GET: /Dinners/Create

[Authorize]
public ActionResult Create() {
 ...
}

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinnerToCreate) {
 ...
}

Page 133 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

ASP.NET MVC supports the ability to create “action filters” that can be used to implement re-usable
logic that can be declaratively applied to action methods. The [Authorize] filter is one of the built-in
action filters provided by ASP.NET MVC, and it enables a developer to declaratively apply authorization
rules to action methods and controller classes.

When applied without any parameters (like above) the [Authorize] filter enforces that the user making
the action method request must be logged in – and it will automatically redirect the browser to the login
URL if they aren’t. When doing this redirect the originally requested URL is passed as a querystring
argument (for example: /Account/LogOn?ReturnUrl=%2fDinners%2fCreate). The AccountController will
then redirect the user back to the originally requested URL once they login.

The [Authorize] filter optionally supports the ability to specify a “Users” or “Roles” property that can be
used to require that the user is both logged in and within a list of allowed users or a member of an
allowed security role. For example, the code below only allows two specific users, “scottgu” and “billg”,
to access the /Dinners/Create URL:

[Authorize(Users="scottgu,billg")]
public ActionResult Create() {
 ...
}

Embedding specific user names within code tends to be pretty un-maintainable though. A better
approach is to define higher-level “roles” that the code checks against, and then to map users into the
role using either a database or active directory system (enabling the actual user mapping list to be
stored externally from the code). ASP.NET includes a built-in role management API as well as a built-in
set of role providers (including ones for SQL and Active Directory) that can help perform this user/role
mapping. We could then update the code to only allow users within a specific “admin” role to access
the /Dinners/Create URL:

[Authorize(Roles="admin")]
public ActionResult Create() {
 ...
}

Using the User.Identity.Name property when Creating Dinners
We can retrieve the username of the currently logged-in user of a request using the User.Identity.Name
property exposed on the Controller base class.

Earlier when we implemented the HTTP-POST version of our Create() action method we had hardcoded
the “HostedBy” property of the Dinner to a static string. We can now update this code to instead use
the User.Identity.Name property, as well as automatically add an RSVP for the host creating the Dinner:

Page 134 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

//
// POST: /Dinners/Create

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Create(Dinner dinner) {

 if (ModelState.IsValid) {
 try {
 dinner.HostedBy = User.Identity.Name;

 RSVP rsvp = new RSVP();
 rsvp.AttendeeName = User.Identity.Name;
 dinner.RSVPs.Add(rsvp);

 dinnerRepository.Add(dinner);
 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());
 }
 }

 return View(new DinnerFormViewModel(dinner));
}

Because we have added an [Authorize] attribute to the Create() method, ASP.NET MVC ensures that the
action method only executes if the user visiting the /Dinners/Create URL is logged in on the site. As
such, the User.Identity.Name property value will always contain a valid username.

Using the User.Identity.Name property when Editing Dinners
Let’s now add some authorization logic that restricts users so that they can only edit the properties of
dinners they themselves are hosting.

To help with this, we’ll first add an “IsHostedBy(username)” helper method to our Dinner object (within
the Dinner.cs partial class we built earlier). This helper method returns true or false depending on
whether a supplied username matches the Dinner HostedBy property, and encapsulates the logic
necessary to perform a case-insensitive string comparison of them:

public partial class Dinner {

 public bool IsHostedBy(string userName) {

 return HostedBy.Equals(userName,
 StringComparison.InvariantCultureIgnoreCase);
 }
}

We’ll then add an [Authorize] attribute to the Edit() action methods within our DinnersController class.
This will ensure that users must be logged in to request a /Dinners/Edit/[id] URL.

Page 135 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We can then add code to our Edit methods that uses the Dinner.IsHostedBy(username) helper method
to verify that the logged-in user matches the Dinner host. If the user is not the host, we’ll display an
“InvalidOwner” view and terminate the request. The code to do this looks like below:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View("InvalidOwner");

 return View(new DinnerFormViewModel(dinner));
}

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Edit(int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View("InvalidOwner");

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new {id = dinner.DinnerID});
 }
 catch {
 ModelState.AddModelErrors(dinnerToEdit.GetRuleViolations());

 return View(new DinnerFormViewModel(dinner));
 }
}

We can then right-click on the \Views\Dinners directory and choose the Add->View menu command to
create a new “InvalidOwner” view. We’ll populate it with the below error message:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 <title>You Don't Own This Dinner</title>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="MainContent" runat="server">
 <h2>Error Accessing Dinner</h2>

 <p>Sorry - but only the host of a Dinner can edit or delete it.</p>
</asp:Content>

Page 136 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And now when a user attempts to edit a dinner they don’t own, they’ll get an error message:

We can repeat the same steps for the Delete() action methods within our controller to lock down
permission to delete Dinners as well, and ensure that only the host of a Dinner can delete it.

Showing/Hiding Edit and Delete Links
We are linking to the Edit and Delete action method of our DinnersController class from our Details URL:

Page 137 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Currently we are showing the Edit and Delete action links regardless of whether the visitor to the details
URL is the host of the dinner. Let’s change this so that the links are only displayed if the visiting user is
the owner of the dinner.

The Details() action method within our DinnersController retrieves a Dinner object and then passes it as
the model object to our view template:

//
// GET: /Dinners/Details/5

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");

 return View(dinner);
}

We can update our view template to conditionally show/hide the Edit and Delete links by using the
Dinner.IsHostedBy() helper method like below:

<% if (Model.IsHostedBy(Context.User.Identity.Name)) { %>

 <%= Html.ActionLink("Edit Dinner", "Edit", new { id=Model.DinnerID })%> |
 <%= Html.ActionLink("Delete Dinner", "Delete", new {id=Model.DinnerID})%>

<% } %>

Page 138 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

AJAX Enabling RSVPs Accepts
Let’s now add support for logged-in users to RSVP their interest in attending a dinner. We’ll implement
this using an AJAX-based approach integrated within the dinner details page.

Indicating whether the user is RSVP’d
Users can visit the /Dinners/Details/[id] URL to see details about a particular dinner:

The Details() action method is implemented like so:

//
// GET: /Dinners/Details/2

public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (dinner == null)
 return View("NotFound");
 else
 return View(dinner);
}

Our first step to implement RSVP support will be to add an “IsUserRegistered(username)” helper
method to our Dinner object (within the Dinner.cs partial class we built earlier). This helper method
returns true or false depending on whether the user is currently RSVP’d for the Dinner:

Page 139 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public partial class Dinner {

 public bool IsUserRegistered(string userName) {

 return RSVPs.Any(r => r.AttendeeName.Equals(userName,
 StringComparison.InvariantCultureIgnoreCase));
 }
}

We can then add the following code to our Details.aspx view template to display an appropriate
message indicating whether the user is registered or not for the event:

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <p>You are not registered for this event</p>

 <% } %>

<% } else { %>

 Logon to RSVP for this event.

<% } %>

And now when a user visits a Dinner they are registered for they’ll see this message:

Page 140 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And when they visit a Dinner they are not registered for they’ll see the below message:

Implementing the Register Action Method
Let’s now add the functionality necessary to enable users to RSVP for a dinner from the details page.

To implement this, we’ll create a new “RSVPController” class by right-clicking on the \Controllers
directory and choosing the Add->Controller menu command.

We’ll implement a “Register” action method within the new RSVPController class that takes an id for a
Dinner as an argument, retrieves the appropriate Dinner object, checks to see if the logged-in user is
currently in the list of users who have registered for it, and if not adds an RSVP object for them:

public class RSVPController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Dinners/Register/1

 [Authorize, AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Register(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsUserRegistered(User.Identity.Name)) {
 RSVP rsvp = new RSVP();

Page 141 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 rsvp.AttendeeName = User.Identity.Name;

 dinner.RSVPs.Add(rsvp);
 dinnerRepository.Save();
 }

 return Content("Thanks - we'll see you there!");
 }
}

Notice above how we are returning a simple string as the output of the action method. We could have
embedded this message within a view template – but since it is so small we’ll just use the Content()
helper method on the controller base class and return a string message like above.

Calling the Register Action Method using AJAX
We’ll use AJAX to invoke the Register action method from our Details view. Implementing this is pretty
easy. First we’ll add two script library references:

<script src="/Scripts/MicrosoftAjax.js" type="text/javascript"></script>
<script src="/Scripts/MicrosoftMvcAjax.js" type="text/javascript"></script>

The first library references the core ASP.NET AJAX client-side script library. This file is approximately 24k
in size (compressed) and contains core client-side AJAX functionality. The second library contains utility
functions that integrate with ASP.NET MVC’s built-in AJAX helper methods (which we’ll use shortly).

We can then update the view template code we added earlier so that instead of outputing a “You are
not registered for this event” message, we instead render a link that when pushed performs an AJAX call
that invokes our Register action method on our RSVP controller and RSVPs the user:

<div id="rsvpmsg">

<% if (Request.IsAuthenticated) { %>

 <% if (Model.IsUserRegistered(Context.User.Identity.Name)) { %>

 <p>You are registered for this event!</p>

 <% } else { %>

 <%= Ajax.ActionLink("RSVP for this event",
 "Register", "RSVP"
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId="rsvpmsg" }) %>
 <% } %>

<% } else { %>

 Logon to RSVP for this event.

<% } %>

</div>

Page 142 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The Ajax.ActionLink() helper method used above is built-into ASP.NET MVC and is similar to the
Html.ActionLink() helper method except that instead of performing a standard navigation it makes an
AJAX call to the action method. Above we are calling the “Register” action method on the “RSVP”
controller and passing the DinnerID as the “id” parameter to it. The final AjaxOptions parameter we are
passing indicates that we want to take the content returned from the action method and update the
HTML <div> element on the page whose id is “rsvpmsg”.

And now when a user browses to a dinner they aren’t registered for yet they’ll see a link to RSVP for it:

If they click the “RSVP for this event” link they’ll make an AJAX call to the Register action method on the
RSVP controller, and when it completes they’ll see an updated message like below:

Page 143 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The network bandwidth and traffic involved when making this AJAX call is really lightweight. When the
user clicks on the "RSVP for this event" link, a small HTTP POST network request is made to the
/Dinners/Register/1 URL that looks like below on the wire:

POST /Dinners/Register/49 HTTP/1.1
X-Requested-With: XMLHttpRequest
Content-Type: application/x-www-form-urlencoded; charset=utf-8
Referer: http://localhost:8080/Dinners/Details/49

And the response from our Register action method is simply:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 29
Thanks - we'll see you there!

This lightweight call is fast and will work even over a slow network.

Adding a jQuery Animation
The AJAX functionality we implemented works well and fast. Sometimes it can happen so fast, though,
that a user might not notice that the RSVP link has been replaced with new text. To make the outcome
a little more obvious we can add a simple animation to draw attention to the updates message.

Page 144 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The default ASP.NET MVC project template includes jQuery – an excellent (and very popular) open
source JavaScript library that is also supported by Microsoft. jQuery provides a number of features,
including a nice HTML DOM selection and effects library.

To use jQuery we’ll first add a script reference to it. Because we are going to be using jQuery within a
variety of places within our site, we’ll add the script reference within our Site.master master page file so
that all pages can use it.

<script src="/Scripts/jQuery-1.3.2.js" type="text/javascript"></script>

Tip: make sure you have intalled the JavaScript intellisense hotfix for VS 2008 SP1 that enables richer
intellisense support for JavaScript files (including jQuery). You can download it from:
http://tinyurl.com/vs2008javascripthotfix

Code written using JQuery often uses a global "$()" JavaScript method that retrieves one or more HTML
elements using a CSS selector. For example, $(“#rsvpmsg”) selects any HTML element with the id of
rsvpmsg, while $(“.something") would select all elements with the "something" CSS class name. You can
also write more advanced queries like “return all of the checked radio buttons” using a selector query
like: $("input[@type=radio][@checked]").

Once you've selected elements, you can call methods on them to take action, like hiding them:
$("#rsvpmsg").hide();

For our RSVP scenario, we’ll define a simple JavaScript function named “AnimateRSVPMessage” that
selects the “rsvpmsg” <div> and animates the size of its text content. The below code starts the text
small and then causes it to increase over a 400 milliseconds timeframe:

<script type="text/javascript">

 function AnimateRSVPMessage() {
 $("#rsvpmsg").animate({fontSize: "1.5em"}, 400);
 }

</script>

We can then wire-up this JavaScript function to be called after our AJAX call successfully completes by
passing its name to our Ajax.ActionLink() helper method (via the AjaxOptions “OnSuccess” event
property):

<%= Ajax.ActionLink("RSVP for this event",
 "Register", "RSVP",
 new { id=Model.DinnerID },
 new AjaxOptions { UpdateTargetId="rsvpmsg",
 OnSuccess="AnimateRSVPMessage" }) %>

And now when the “RSVP for this event” link is clicked and our AJAX call completes successfully, the
content message sent back will animate and grow large:

Page 145 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

In addition to providing an “OnSuccess” event, the AjaxOptions object exposes OnBegin, OnFailure, and
OnComplete events that you can handle (along with a variety of other properties and useful options).

Cleanup - Refactor out a RSVP Partial View
Our details view template is starting to get a little long, which overtime will make it a little harder to
understand. To help improve the code readability, let’s finish up by creating a partial view –
RSVPStatus.ascx – that encapsulate all of the RSVP view code for our Details page.

We can do this by right-clicking on the \Views\Dinners folder and then choosing the Add->View menu
command. We’ll have it take a Dinner object as its strongly-typed ViewModel. We can then copy/paste
the RSVP content from our Details.aspx view into it.

Once we’ve done that, let’s also create another partial view – EditAndDeleteLinks.ascx - that
encapsulates our Edit and Delete link view code. We’ll also have it take a Dinner object as its strongly-
typed ViewModel, and copy/paste the Edit and Delete logic from our Details.aspx view into it.

Our details view template can then just include two Html.RenderPartial() method calls at the bottom:

 <% Html.RenderPartial("RSVPStatus"); %>
 <% Html.RenderPartial("EditAndDeleteLinks"); %>

This makes the code cleaner to read and maintain.

Page 146 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Integrating an AJAX Map
We’ll now make our application a little more visually exciting by integrating AJAX mapping support. This
will enable users who are creating, editing or viewing dinners to see the location of the dinner
graphically.

Creating a Map Partial View
We are going to use mapping functionality in several places within our application. To keep our code
DRY we’ll encapsulate the common map functionality within a single partial template that we can re-use
across multiple controller actions and views. We’ll name this partial view “map.ascx” and create it
within the \Views\Dinners directory.

We can create the map.ascx partial by right-clicking on the \Views\Dinners directory and choosing the
Add->View menu command. We’ll name the view “Map.ascx”, check it as a partial view, and indicate
that we are going to pass it a strongly-typed “Dinner” model class:

When we click the “Add” button our partial template will be created. We’ll then update the Map.ascx
file to have the following content:

<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2"
type="text/javascript"></script>

<script src="/Scripts/Map.js" type="text/javascript"></script>

Page 147 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

<div id="theMap">
</div>

<script type="text/javascript">

 $(document).ready(function() {
 var latitude = <%=Model.Latitude %>;
 var longitude = <%=Model.Longitude %>;

 if ((latitude == 0) || (longitude == 0))
 LoadMap();
 else
 LoadMap(latitude, longitude, mapLoaded);
 });

 function mapLoaded() {
 var title = "<%= Html.Encode(Model.Title) %>";
 var address = "<%= Html.Encode(Model.Address) %>";

 LoadPin(center, title, address);
 map.SetZoomLevel(14);
 }

</script>

The first <script> reference points to the Microsoft Virtual Earth 6.2 mapping library. The second
<script> reference points to a map.js file that we will shortly create which will encapsulate our common
Javascript mapping logic. The <div id=”theMap”> element is the HTML container that Virtual Earth will
use to host the map.

We then have an embedded <script> block that contains two JavaScript functions specific to this view.
The first function uses jQuery to wire-up a function that executes when the page is ready to run client-
side script. It calls a LoadMap() helper function that we’ll define within our Map.js script file to load the
virtual earth map control. The second function is a callback event handler that adds a pin to the map
that identifies a location.

Notice how we are using a server-side <%= %> block within the client-side script block to embed the
latitude and longitude of the Dinner we want to map into the JavaScript. This is a useful technique to
output dynamic values that can be used by client-side script (without requiring a separate AJAX call back
to the server to retrieve the values – which makes it faster). The <%= %> blocks will execute when the
view is rendering on the server – and so the output of the HTML will just end up with embedded
JavaScript values (for example: var latitude = 47.64312;).

Creating a Map.js utility library
Let’s now create the Map.js file that we can use to encapsulate the JavaScript functionality for our map
(and implement the LoadMap and LoadPin methods above). We can do this by right-clicking on the
\Scripts directory within our project, and then choose the “Add->New Item” menu command, select the
JScript item, and name it “Map.js”.

Page 148 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Below is the JavaScript code we’ll add to the Map.js file that will interact with Virtual Earth to display our
map and add locations pins to it for our dinners:

var map = null;
var points = [];
var shapes = [];
var center = null;

function LoadMap(latitude, longitude, onMapLoaded) {
 map = new VEMap('theMap');
 options = new VEMapOptions();
 options.EnableBirdseye = false;

 // Makes the control bar less obtrusize.
 map.SetDashboardSize(VEDashboardSize.Small);

 if (onMapLoaded != null)
 map.onLoadMap = onMapLoaded;

 if (latitude != null && longitude != null) {
 center = new VELatLong(latitude, longitude);
 }

 map.LoadMap(center, null, null, null, null, null, null, options);
}

function LoadPin(LL, name, description) {
 var shape = new VEShape(VEShapeType.Pushpin, LL);

 //Make a nice Pushpin shape with a title and description
 shape.SetTitle(" " + escape(name) + "");
 if (description !== undefined) {
 shape.SetDescription("<p class=\"pinDetails\">" +
 escape(description) + "</p>");
 }
 map.AddShape(shape);
 points.push(LL);
 shapes.push(shape);
}

function FindAddressOnMap(where) {
 var numberOfResults = 20;
 var setBestMapView = true;
 var showResults = true;

 map.Find("", where, null, null, null,
 numberOfResults, showResults, true, true,
 setBestMapView, callbackForLocation);
}

function callbackForLocation(layer, resultsArray, places,
 hasMore, VEErrorMessage) {

 clearMap();

 if (places == null)

Page 149 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 return;

 //Make a pushpin for each place we find
 $.each(places, function(i, item) {
 var description = "";
 if (item.Description !== undefined) {
 description = item.Description;
 }
 var LL = new VELatLong(item.LatLong.Latitude,
 item.LatLong.Longitude);

 LoadPin(LL, item.Name, description);
 });

 //Make sure all pushpins are visible
 if (points.length > 1) {
 map.SetMapView(points);
 }

 //If we've found exactly one place, that's our address.
 if (points.length === 1) {
 $("#Latitude").val(points[0].Latitude);
 $("#Longitude").val(points[0].Longitude);
 }
}

function clearMap() {
 map.Clear();
 points = [];
 shapes = [];
}

Integrating the Map with Create and Edit Forms
We’ll now integrate the Map support with our existing Create and Edit scenarios. The good news is that
this is pretty easy to-do, and doesn’t require us to change any of our Controller code. Because our
Create and Edit views share a common “DinnerForm” partial view to implement the dinner form UI, we
can add the map in one place and have both our Create and Edit scenarios use it.

All we need to-do is to open the \Views\Dinners\DinnerForm.ascx partial view and update it to include
our new map partial. Below is what the updated DinnerForm will look like once the map is added (note:
the HTML form elements are omitted from the code snippet below for brevity):

<%= Html.ValidationSummary() %>

<% using (Html.BeginForm()) { %>

 <fieldset>

 <div id="dinnerDiv">
 <p>
 [HTML Form Elements Removed for Brevity]
 </p>
 <p>
 <input type="submit" value="Save" />

Page 150 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 </p>
 </div>

 <div id="mapDiv">
 <% Html.RenderPartial("Map", Model.Dinner); %>
 </div>

 </fieldset>

 <script type="text/javascript">

 $(document).ready(function() {
 $("#Address").blur(function(evt) {
 $("#Latitude").val("");
 $("#Longitude").val("");

 var address = jQuery.trim($("#Address").val());
 if (address.length < 1)
 return;

 FindAddressOnMap(address);
 });
 });

 </script>

<% } %>

The DinnerForm partial above takes an object of type “DinnerFormViewModel” as its model type
(because it needs both a Dinner object, as well as a SelectList to populate the dropdownlist of
countries). Our Map partial just needs an object of type “Dinner” as its model type, and so when we
render the map partial we are passing just the Dinner sub-property of DinnerFormViewModel to it:

<% Html.RenderPartial("Map", Model.Dinner); %>

The JavaScript function we’ve added to the partial uses jQuery to attach a “blur” event to the “Address”
HTML textbox. You’ve probably heard of “focus” events that fire when a user clicks or tabs into a
textbox. The opposite is a “blur” event that fires when a user exits a textbox. The above event handler
clears the latitude and longitude textbox values when this happens, and then plots the new address
location on our map. A callback event handler that we defined within the map.js file will then update
the longitude and latitude textboxes on our form using values returned by virtual earth based on the
address we gave it.

And now when we run our application again and click the “Host Dinner” tab we’ll see a default map
displayed along with our standard Dinner form elements:

Page 151 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we type in an address, and then tab away, the map will dynamically update to display the
location, and our event handler will populate the latitude/longitude textboxes with the location values:

Page 152 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

If we save the new dinner and then open it again for editing, we’ll find that the map location is displayed
when the page loads:

Page 153 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Every time the address field is changed, the map and the latitude/longitude coordinates will update.

Now that the map displays the Dinner location, we can also change the Latitude and Longitude form
fields from being visible textboxes to instead be hidden elements (since the map is automatically
updating them each time an address is entered). To-do this we’ll switch from using the Html.TextBox()
HTML helper to using the Html.Hidden()helper method:

<p>
 <%= Html.Hidden("Latitude", Model.Dinner.Latitude)%>
 <%= Html.Hidden("Longitude", Model.Dinner.Longitude)%>
</p>

And now our forms are a little more user-friendly and avoid displaying the raw latitude/longitude (while
still storing them with each Dinner in the database):

Page 154 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Integrating the Map with the Details View
Now that we have the map integrated with our Create and Edit scenarios, let’s also integrate it with our
Details scenario. All we need to-do is to call <% Html.RenderPartial(“map”); %> within the Details view.

Below is what the source code to the complete Details view (with map integration) looks like:

<asp:Content ID="Title" ContentPlaceHolderID="TitleContent" runat="server">
 <%= Html.Encode(Model.Title) %>
</asp:Content>

<asp:Content ID="details" ContentPlaceHolderID="MainContent" runat="server">

 <div id="dinnerDiv">

 <h2><%= Html.Encode(Model.Title) %></h2>
 <p>
 When:
 <%= Model.EventDate.ToShortDateString() %>

 @
 <%= Model.EventDate.ToShortTimeString() %>
 </p>
 <p>
 Where:
 <%= Html.Encode(Model.Address) %>,

Page 155 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 <%= Html.Encode(Model.Country) %>
 </p>
 <p>
 Description:
 <%= Html.Encode(Model.Description) %>
 </p>
 <p>
 Organizer:
 <%= Html.Encode(Model.HostedBy) %>
 (<%= Html.Encode(Model.ContactPhone) %>)
 </p>

 <% Html.RenderPartial("RSVPStatus"); %>
 <% Html.RenderPartial("EditAndDeleteLinks"); %>

 </div>

 <div id="mapDiv">
 <% Html.RenderPartial("map"); %>
 </div>

</asp:Content>

And now when a user navigates to a /Dinners/Details/[id] URL they’ll see details about the dinner, the
location of the dinner on the map (complete with a push-pin that when hovered over displays the title
of the dinner and the address of it), and have an AJAX link to RSVP for it:

Page 156 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Implementing Location Search in our Database and Repository
To finish off our AJAX implementation, let’s add a Map to the home page of the application that allows
users to graphically search for dinners near them.

We’ll begin by implementing support within our database and data repository layer to efficiently
perform a location-based radius search for Dinners. We could use the new geospatial features of SQL
2008 to implement this, or alternatively we can use a SQL function approach that Gary Dryden discussed
in article here: http://www.codeproject.com/KB/cs/distancebetweenlocations.aspx and Rob Conery
blogged about using with LINQ to SQL here: http://blog.wekeroad.com/2007/08/30/linq-and-
geocoding/

To implement this technique, we will open the “Server Explorer” within Visual Studio, select the
NerdDinner database, and then right-click on the “functions” sub-node under it and choose to create a
new “Scalar-valued function”:

http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx�
http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx�
http://www.microsoft.com/sqlserver/2008/en/us/spatial-data.aspx�
http://www.codeproject.com/KB/cs/distancebetweenlocations.aspx�
http://blog.wekeroad.com/2007/08/30/linq-and-geocoding/�
http://blog.wekeroad.com/2007/08/30/linq-and-geocoding/�

Page 157 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We’ll then paste in the following DistanceBetween function:

CREATE FUNCTION [dbo].[DistanceBetween] (@Lat1 as real,
 @Long1 as real, @Lat2 as real, @Long2 as real)
RETURNS real
AS
BEGIN

DECLARE @dLat1InRad as float(53);
SET @dLat1InRad = @Lat1 * (PI()/180.0);
DECLARE @dLong1InRad as float(53);
SET @dLong1InRad = @Long1 * (PI()/180.0);
DECLARE @dLat2InRad as float(53);
SET @dLat2InRad = @Lat2 * (PI()/180.0);
DECLARE @dLong2InRad as float(53);
SET @dLong2InRad = @Long2 * (PI()/180.0);

DECLARE @dLongitude as float(53);
SET @dLongitude = @dLong2InRad - @dLong1InRad;
DECLARE @dLatitude as float(53);
SET @dLatitude = @dLat2InRad - @dLat1InRad;
/* Intermediate result a. */
DECLARE @a as float(53);
SET @a = SQUARE (SIN (@dLatitude / 2.0)) + COS (@dLat1InRad)
 * COS (@dLat2InRad)
 * SQUARE(SIN (@dLongitude / 2.0));
/* Intermediate result c (great circle distance in Radians). */
DECLARE @c as real;
SET @c = 2.0 * ATN2 (SQRT (@a), SQRT (1.0 - @a));
DECLARE @kEarthRadius as real;
/* SET kEarthRadius = 3956.0 miles */
SET @kEarthRadius = 6376.5; /* kms */

DECLARE @dDistance as real;

Page 158 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

SET @dDistance = @kEarthRadius * @c;
return (@dDistance);
END

We’ll then create a new table-valued function in SQL Server that we’ll call “NearestDinners”:

This “NearestDinners” table function uses the DistanceBetween helper function to return all Dinners
within 100 miles of the latitude and longitude we supply it:

CREATE FUNCTION [dbo].[NearestDinners]
 (
 @lat real,
 @long real
)
RETURNS TABLE
AS
 RETURN
 SELECT Dinners.DinnerID
 FROM Dinners
 WHERE dbo.DistanceBetween(@lat, @long, Latitude, Longitude) <100

To call this function, we’ll first open up the LINQ to SQL designer by double-clicking on the
NerdDinner.dbml file within our \Models directory:

Page 159 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We’ll then drag the NearestDinners and DistanceBetween functions onto the LINQ to SQL designer,
which will cause them to be added as methods on our LINQ to SQL NerdDinnerDataContext class:

We can then expose a “FindByLocation” query method on our DinnerRepository class that uses the
NearestDinner function to return upcoming Dinners that are within 100 miles of the specified location:

Page 160 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public IQueryable<Dinner> FindByLocation(float latitude, float longitude) {

 var dinners = from dinner in FindUpcomingDinners()
 join i in db.NearestDinners(latitude, longitude)
 on dinner.DinnerID equals i.DinnerID
 select dinner;

 return dinners;
}

Implementing a JSON-based AJAX Search Action Method
We’ll now implement a controller action method that takes advantage of the new FindByLocation()
repository method to return back a list of Dinner data that can be used to populate a map. We’ll have
this action method return back the Dinner data in a JSON (JavaScript Object Notation) format so that it
can be easily manipulated using JavaScript on the client.

To implement this, we’ll create a new “SearchController” class by right-clicking on the \Controllers
directory and choosing the Add->Controller menu command. We’ll then implement a
“SearchByLocation” action method within the new SearchController class like below:

public class JsonDinner {
 public int DinnerID { get; set; }
 public string Title { get; set; }
 public double Latitude { get; set; }
 public double Longitude { get; set; }
 public string Description { get; set; }
 public int RSVPCount { get; set; }
}

public class SearchController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // AJAX: /Search/SearchByLocation

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult SearchByLocation(float longitude, float latitude) {

 var dinners = dinnerRepository.FindByLocation(latitude, longitude);

 var jsonDinners = from dinner in dinners
 select new JsonDinner {
 DinnerID = dinner.DinnerID,
 Latitude = dinner.Latitude,
 Longitude = dinner.Longitude,
 Title = dinner.Title,
 Description = dinner.Description,
 RSVPCount = dinner.RSVPs.Count
 };

 return Json(jsonDinners.ToList());
 }
}

Page 161 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The SearchController’s SearchByLocation action method internally calls the FindByLocation method on
DinnerRespository to get a list of nearby dinners. Rather than return the Dinner objects directly to the
client, though, it instead returns JsonDinner objects. The JsonDinner class exposes a subset of Dinner
properties (for example: for security reasons it doesn’t disclose the names of the people who have
RSVP’d for a dinner). It also includes an RSVPCount property that doesn’t exist on Dinner– and which is
dynamically calculated by counting the number of RSVP objects associated with a particular dinner.

We are then using the Json() helper method on the Controller base class to return the sequence of
dinners using a JSON-based wire format. JSON is a standard text format for representing simple data-
structures. Below is an example of what a JSON-formatted list of two JsonDinner objects looks like
when returned from our action method:

[{"DinnerID":53,"Title":"Dinner with the Family","Latitude":47.64312,"Longitude":-
122.130609,"Description":"Fun dinner","RSVPCount":2}, {"DinnerID":54,"Title":"Another
Dinner","Latitude":47.632546,"Longitude":-122.21201,"Description":"Dinner with
Friends","RSVPCount":3}]

Calling the JSON-based AJAX method using jQuery
We are now ready to update the home page of the NerdDinner application to use the SearchController’s
SearchByLocation action method. To-do this, we’ll open the /Views/Home/Index.aspx view template
and update it to have a textbox, search button, our map, and a <div> element named dinnerList:

<h2>Find a Dinner</h2>

<div id="mapDivLeft">

 <div id="searchBox">
 Enter your location: <%= Html.TextBox("Location") %>
 <input id="search" type="submit" value="Search" />
 </div>

 <div id="theMap">
 </div>

</div>

<div id="mapDivRight">
 <div id="dinnerList"></div>
</div>

We can then add two JavaScript functions to the page:

<script type="text/javascript">

 $(document).ready(function() {
 LoadMap();
 });

 $("#search").click(function(evt) {
 var where = jQuery.trim($("#Location").val());

Page 162 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 if (where.length < 1)
 return;

 FindDinnersGivenLocation(where);
 });

</script>

The first JavaScript function loads the map when the page first loads. The second JavaScript function
wires up a JavaScript click event handler on the search button. When the button is pressed it calls the
FindDinnersGivenLocation() JavaScript function which we’ll add to our Map.js file:

function FindDinnersGivenLocation(where) {
 map.Find("", where, null, null, null, null, null, false,
 null, null, callbackUpdateMapDinners);
}

This FindDinnersGivenLocation() function calls map.Find() on the Virtual Earth Control to center it on the
entered location. When the virtual earth map service returns, the map.Find() method invokes the
callbackUpdateMapDinners callback method we passed it as the final argument.

The callbackUpdateMapDinners() method is where the real work is done. It uses jQuery’s $.post()
helper method to perform an AJAX call to our SearchController’s SearchByLocation() action method –
passing it the latitude and longitude of the newly centered map. It defines an inline function that will be
called when the $.post() helper method completes, and the JSON-formatted dinner results returned
from the SearchByLocation() action method will be passed it using a variable called “dinners”. It then
does a foreach over each returned dinner, and uses the dinner’s latitude and longitude and other
properties to add a new pin on the map. It also adds a dinner entry to the HTML list of dinners to the
right of the map. It then wires-up a hover event for both the pushpins and the HTML list so that details
about the dinner are displayed when a user hovers over them:

function callbackUpdateMapDinners(layer, resultsArray,
 places, hasMore, VEErrorMessage) {

 $("#dinnerList").empty();
 clearMap();
 var center = map.GetCenter();

 $.post("/Search/SearchByLocation", { latitude: center.Latitude,
 longitude: center.Longitude },
 function(dinners) {
 $.each(dinners, function(i, dinner) {

 var LL = new VELatLong(dinner.Latitude,
 dinner.Longitude, 0, null);

 var RsvpMessage = "";

 if (dinner.RSVPCount == 1)
 RsvpMessage = "" + dinner.RSVPCount + " RSVP";
 else
 RsvpMessage = "" + dinner.RSVPCount + " RSVPs";

Page 163 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 // Add Pin to Map
 LoadPin(LL, ''
 + dinner.Title + '',
 "<p>" + dinner.Description + "</p>" + RsvpMessage);

 //Add a dinner to the dinnerList on the right
 $('#dinnerList').append($('')
 .attr("class", "dinnerItem")
 .append($('<a/>').attr("href",
 "/Dinners/Details/" + dinner.DinnerID)
 .html(dinner.Title))
 .append(" ("+RsvpMessage+")"));
 });

 // Adjust zoom to display all the pins we just added.
 if (points.length > 1) {
 map.SetMapView(points);
 }

 // Display the event's pin-bubble on hover.
 $(".dinnerItem").each(function(i, dinner) {
 $(dinner).hover(
 function() { map.ShowInfoBox(shapes[i]); },
 function() { map.HideInfoBox(shapes[i]); }
);
 });
 }, "json");

And now when we run the application and visit the home-page we’ll be presented with a map. When
we enter the name of a city the map will display the upcoming dinners near it:

Page 164 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Hovering over a dinner will display details about it:

Clicking the Dinner title either in the bubble or on the right-hand side in the HTML list will navigate us to
the dinner – which we can then optionally RSVP for:

Page 165 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Unit Testing
Let’s develop a suite of automated unit tests that verify our NerdDinner functionality, and which will
give us the confidence to make changes and improvements to the application in the future.

Why Unit Test?
On the drive into work one morning you have a sudden flash of inspiration about an application you are
working on. You realize there is a change you can implement that will make the application dramatically
better. It might be a refactoring that cleans up the code, adds a new feature, or fixes a bug.

The question that confronts you when you arrive at your computer is – “how safe is it to make this
improvement?” What if making the change has side effects or breaks something? The change might be
simple and only take a few minutes to implement, but what if it takes hours to manually test out all of
the application scenarios? What if you forget to cover a scenario and a broken application goes into
production? Is making this improvement really worth all the effort?

Automated unit tests can provide a safety net that enables you to continually enhance your applications,
and avoid being afraid of the code you are working on. Having automated tests that quickly verify
functionality enables you to code with confidence – and empower you to make improvements you
might otherwise not have felt comfortable doing. They also help create solutions that are more
maintainable and have a longer lifetime - which leads to a much higher return on investment.

The ASP.NET MVC Framework makes it easy and natural to unit test application functionality. It also
enables a Test Driven Development (TDD) workflow that enables test-first based development.

NerdDinner.Tests Project
When we created our NerdDinner application at the beginning of this tutorial, we were prompted with a
dialog asking whether we wanted to create a unit test project to go along with the application project:

Page 166 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We kept the “Yes, create a unit test project” radio button selected – which resulted in a
“NerdDinner.Tests” project being added to our solution:

The NerdDinner.Tests project references the NerdDinner application project assembly, and enables us
to easily add automated tests to it that verify the application.

Creating Unit Tests for our Dinner Model Class
Let’s add some tests to our NerdDinner.Tests project that verify the Dinner class we created when we
built our model layer.

We’ll start by creating a new folder within our test project called “Models” where we’ll place our model-
related tests. We’ll then right-click on the folder and choose the Add->New Test menu command. This
will bring up the “Add New Test” dialog.

We’ll choose to create a “Unit Test” and name it “DinnerTest.cs”:

Page 167 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

When we click the “ok” button Visual Studio will add (and open) a DinnerTest.cs file to the project:

The default Visual Studio unit test template has a bunch of boiler-plate code within it that I find a little
messy. Let’s clean it up to just contain the code below:

Page 168 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NerdDinner.Models;

namespace NerdDinner.Tests.Models {

 [TestClass]
 public class DinnerTest {

 }
}

The [TestClass] attribute on the DinnerTest class above identifies it as a class that will contain tests, as
well as optional test initialization and teardown code. We can define tests within it by adding public
methods that have a [TestMethod] attribute on them.

Below are the first of two tests we’ll add that exercise our Dinner class. The first test verifies that our
Dinner is invalid if a new Dinner is created without all properties being set correctly. The second test
verifies that our Dinner is valid when a Dinner has all properties set with valid values:

[TestClass]
public class DinnerTest {

 [TestMethod]
 public void Dinner_Should_Not_Be_Valid_When_Some_Properties_Incorrect() {

 //Arrange
 Dinner dinner = new Dinner() {
 Title = "Test title",
 Country = "USA",
 ContactPhone = "BOGUS"
 };

 // Act
 bool isValid = dinner.IsValid;

 //Assert
 Assert.IsFalse(isValid);
 }

 [TestMethod]
 public void Dinner_Should_Be_Valid_When_All_Properties_Correct() {

 //Arrange
 Dinner dinner = new Dinner {
 Title = "Test title",
 Description = "Some description",
 EventDate = DateTime.Now,
 HostedBy = "ScottGu",
 Address = "One Microsoft Way",
 Country = "USA",

Page 169 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 ContactPhone = "425-703-8072",
 Latitude = 93,
 Longitude = -92,
 };

 // Act
 bool isValid = dinner.IsValid;

 //Assert
 Assert.IsTrue(isValid);
 }
}

You’ll notice above that our test names are very explicit (and somewhat verbose). We are doing this
because we might end up creating hundreds or thousands of small tests, and we want to make it easy to
quickly determine the intent and behavior of each of them (especially when we are looking through a
list of failures in a test runner). The test names should always be named after the functionality they are
testing. Above we are using a “Noun_Should_Verb” naming pattern.

We are structuring the tests using the “AAA” testing pattern – which stands for “Arrange, Act, Assert”:

• Arrange: Setup the unit being tested

• Act: Exercise the unit under test and capture results

• Assert: Verify the behavior

When we write tests we want to avoid having the individual tests do too much. Instead each test should
verify only a single concept (which will make it much easier to pinpoint the cause of failures). A good
guideline is to try and only have a single assert statement for each test. If you have more than one
assert statement in a test method, make sure they are all being used to test the same concept. When in
doubt, make another test.

Running Tests
Visual Studio 2008 Professional (and higher editions) includes a built-in test runner that can be used to
run Visual Studio Unit Test projects within the IDE. We can select the Test->Run->All Tests in Solution
menu command (or type Ctrl R, A) to run all of our unit tests. Or alternatively we can position our cursor
within a specific test class or test method and use the Test->Run->Tests in Current Context menu
command (or type Ctrl R, T) to run a subset of the unit tests.

Let’s position our cursor within the DinnerTest class and type “Ctrl R, T” to run the two tests we just
defined. When we do this a “Test Results” window will appear within Visual Studio and we’ll see the
results of our test run listed within it:

Page 170 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Note: The VS test results window does not show the Class Name column by default. You can add this by
right-clicking within the Test Results window and using the Add/Remove Columns menu command.

Our two tests took only a fraction of a second to run – and as you can see they both passed. We can
now go on and augment them by creating additional tests that verify specific rule validations, as well as
cover the two helper methods - IsUserHost() and IsUserRegistered() – that we added to the Dinner class.
Having all these tests in place for the Dinner class will make it much easier and safer to add new
business rules and validations to it in the future. We can add our new rule logic to Dinner, and then
within seconds verify that it hasn’t broken any of our previous logic functionality.

Notice how using a descriptive test name makes it easy to quickly understand what each test is verifying.
I recommend using the Tools->Options menu command, opening the Test Tools->Test Execution
configuration screen, and checking the “Double-clicking a failed or inconclusive unit test result displays
the point of failure in the test” checkbox. This will allow you to double-click on a failure in the test
results window and jump immediately to the assert failure.

Creating DinnersController Unit Tests
Let’s now create some unit tests that verify our DinnersController functionality. We’ll start by right-
clicking on the “Controllers” folder within our Test project and then choose the Add->New Test menu
command. We’ll create a “Unit Test” and name it “DinnersControllerTest.cs”.

We’ll create two test methods that verify the Details() action method on the DinnersController. The first
will verify that a View is returned when an existing Dinner is requested. The second will verify that a
“NotFound” view is returned when a non-existent Dinner is requested:

[TestClass]
public class DinnersControllerTest {

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_ExistingDinner() {

 // Arrange
 var controller = new DinnersController();

 // Act
 var result = controller.Details(1) as ViewResult;

 // Assert
 Assert.IsNotNull(result, "Expected View");
 }

Page 171 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange
 var controller = new DinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual("NotFound", result.ViewName);
 }

}

The above code compiles clean. When we run the tests, though, they both fail:

If we look at the error messages, we’ll see that the reason the tests failed was because our
DinnersRepository class was unable to connect to a database. Our NerdDinner application is using a
connection-string to a local SQL Server Express file which lives under the \App_Data directory of the
NerdDinner application project. Because our NerdDinner.Tests project compiles and runs in a different
directory then the application project, the relative path location of our connection-string is incorrect.

We could fix this by copying the SQL Express database file to our test project, and then add an
appropriate test connection-string to it in the App.config of our test project. This would get the above
tests unblocked and running.

Unit testing code using a real database, though, brings with it a number of challenges. Specifically:

• It significantly slows down the execution time of unit tests. The longer it takes to run tests, the less
likely you are to execute them frequently. Ideally you want your unit tests to be able to be run in
seconds – and have it be something you do as naturally as compiling the project.

• It complicates the setup and cleanup logic within tests. You want each unit test to be isolated and
independent of others (with no side effects or dependencies). When working against a real
database you have to be mindful of state and reset it between tests.

Let’s look at a design pattern called “dependency injection” that can help us work around these issues
and avoid the need to use a real database with our tests.

Page 172 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Dependency Injection
Right now DinnersController is tightly "coupled” to the DinnerRepository class. “Coupling” refers to a
situation where a class explicitly relies on another class in order to work:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 //
 // GET: /Dinners/Details/5

 public ActionResult Details(int id) {

 Dinner dinner = dinnerRepository.FindDinner(id);

 if (dinner == null)
 return View("NotFound");

 return View(dinner);
 }

Because the DinnerRepository class requires access to a database, the tightly coupled dependency the
DinnersController class has on the DinnerRepository ends up requiring us to have a database in order for
the DinnersController action methods to be tested.

We can get around this by employing a design pattern called “dependency injection” – which is an
approach where dependencies (like repository classes that provide data access) are no longer implicitly
created within classes that use them. Instead, dependencies can be explicitly passed to the class that
uses them using constructor arguments. If the dependencies are defined using interfaces, we then have
the flexibility to pass in “fake” dependency implementations for unit test scenarios. This enables us to
create test-specific dependency implementations that do not actually require access to a database.

To see this in action, let’s implement dependency injection with our DinnersController.

Extracting an IDinnerRepository interface
Our first step will be to create a new IDinnerRepository interface that encapsulates the repository
contract our controllers require to retrieve and update Dinners.

We can define this interface contract manually by right-clicking on the \Models folder, and then
choosing the Add->New Item menu command and creating a new interface named
IDinnerRepository.cs.

Alternatively we can use the refactoring tools built-into Visual Studio Professional (and higher editions)
to automatically extract and create an interface for us from our existing DinnerRepository class. To
extract this interface using VS, simply position the cursor in the text editor on the DinnerRepository
class, and then right-click and choose the Refactor->Extract Interface menu command:

Page 173 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will launch the “Extract Interface” dialog and prompt us for the name of the interface to create. It
will default to IDinnerRepository and automatically select all public methods on the existing
DinnerRepository class to add to the interface:

When we click the “ok” button, Visual Studio will add a new IDinnerRepository interface to our
application:

Page 174 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public interface IDinnerRepository {

 IQueryable<Dinner> FindAllDinners();
 IQueryable<Dinner> FindByLocation(float latitude, float longitude);
 IQueryable<Dinner> FindUpcomingDinners();
 Dinner GetDinner(int id);

 void Add(Dinner dinner);
 void Delete(Dinner dinner);

 void Save();
}

And our existing DinnerRepository class will be updated so that it implements the interface:

public class DinnerRepository : IDinnerRepository {
 ...
}

Updating DinnersController to support constructor injection
We’ll now update the DinnersController class to use the new interface.

Currently DinnersController is hard-coded such that its “dinnerRepository” field is always a
DinnerRepository instance:

public class DinnersController : Controller {

 DinnerRepository dinnerRepository = new DinnerRepository();

 ...
}

We’ll change it so that the “dinnerRepository” field is of type IDinnerRepository instead of
DinnerRepository. We’ll then add two public DinnersController constructors. One of the constructors
allows an IDinnerRepository to be passed as an argument. The other is a default constructor that uses
our existing DinnerRepository implementation:

public class DinnersController : Controller {

 IDinnerRepository dinnerRepository;

 public DinnersController()
 : this(new DinnerRepository()) {
 }

 public DinnersController(IDinnerRepository repository) {
 dinnerRepository = repository;
 }

 ...
}

Page 175 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Because ASP.NET MVC by default creates controller classes using default constructors, our
DinnersController at runtime will continue to use the DinnerRepository class to perform data access.

We can now update our unit tests, though, to pass in a “fake” dinner repository implementation using
the parameter constructor. This “fake” dinner repository will not require access to a real database, and
instead will use in-memory sample data.

Creating the FakeDinnerRepository class
Let’s create a FakeDinnerRepository class.

We’ll begin by creating a “Fakes” directory within our NerdDinner.Tests project and then add a new
FakeDinnerRepository class to it (right-click on the folder and choose Add->New Class):

We’ll update the code so that the FakeDinnerRepository class implements the IDinnerRepository
interface. We can then right-click on it and choose the “Implement interface IDinnerRepository” context
menu command:

Page 176 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

This will cause Visual Studio to automatically add all of the IDinnerRepository interface members to our
FakeDinnerRepository class with default “stub out” implementations:

public class FakeDinnerRepository : IDinnerRepository {

 public IQueryable<Dinner> FindAllDinners() {
 throw new NotImplementedException();
 }

 public IQueryable<Dinner> FindByLocation(float lat, float long){
 throw new NotImplementedException();
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 throw new NotImplementedException();
 }

 public Dinner GetDinner(int id) {
 throw new NotImplementedException();
 }

 public void Add(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Delete(Dinner dinner) {
 throw new NotImplementedException();
 }

 public void Save() {
 throw new NotImplementedException();
 }
}

We can then update the FakeDinnerRepository implementation to work off of an in-memory
List<Dinner> collection passed to it as a constructor argument:

Page 177 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

public class FakeDinnerRepository : IDinnerRepository {

 private List<Dinner> dinnerList;

 public FakeDinnerRepository(List<Dinner> dinners) {
 dinnerList = dinners;
 }

 public IQueryable<Dinner> FindAllDinners() {
 return dinnerList.AsQueryable();
 }

 public IQueryable<Dinner> FindUpcomingDinners() {
 return (from dinner in dinnerList
 where dinner.EventDate > DateTime.Now
 select dinner).AsQueryable();
 }

 public IQueryable<Dinner> FindByLocation(float lat, float lon) {
 return (from dinner in dinnerList
 where dinner.Latitude == lat && dinner.Longitude == lon
 select dinner).AsQueryable();
 }

 public Dinner GetDinner(int id) {
 return dinnerList.SingleOrDefault(d => d.DinnerID == id);
 }

 public void Add(Dinner dinner) {
 dinnerList.Add(dinner);
 }

 public void Delete(Dinner dinner) {
 dinnerList.Remove(dinner);
 }

 public void Save() {
 foreach (Dinner dinner in dinnerList) {
 if (!dinner.IsValid)
 throw new ApplicationException("Rule violations");
 }
 }
}

We now have a fake IDinnerRepository implementation that does not require a database, and can
instead work off an in-memory list of Dinner objects.

Using the FakeDinnerRepository with Unit Tests
Let’s return to the DinnersController unit tests that failed earlier because the database wasn’t available.
We can update the test methods to use a FakeDinnerRepository populated with sample in-memory
Dinner data to the DinnersController using the code below:

Page 178 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

[TestClass]
public class DinnersControllerTest {

 List<Dinner> CreateTestDinners() {

 List<Dinner> dinners = new List<Dinner>();

 for (int i = 0; i < 101; i++) {

 Dinner sampleDinner = new Dinner() {
 DinnerID = i,
 Title = "Sample Dinner",
 HostedBy = "SomeUser",
 Address = "Some Address",
 Country = "USA",
 ContactPhone = "425-555-1212",
 Description = "Some description",
 EventDate = DateTime.Now.AddDays(i),
 Latitude = 99,
 Longitude = -99
 };
 dinners.Add(sampleDinner);
 }
 return dinners;
 }

 DinnersController CreateDinnersController() {
 var repository = new FakeDinnerRepository(CreateTestDinners());
 return new DinnersController(repository);
 }

 [TestMethod]
 public void DetailsAction_Should_Return_View_For_Dinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(1);

 // Assert
 Assert.IsInstanceOfType(result, typeof(ViewResult));
 }

 [TestMethod]
 public void DetailsAction_Should_Return_NotFoundView_For_BogusDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Details(999) as ViewResult;

 // Assert
 Assert.AreEqual("NotFound", result.ViewName);
 }
}

Page 179 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And now when we run these tests they both pass:

Best of all, they take only a fraction of a second to run, and do not require any complicated
setup/cleanup logic. We can now unit test all of our DinnersController action method code (including
listing, paging, details, create, update and delete) without ever needing to connect to a real database.

Side Topic: Dependency Injection Frameworks
Performing manual dependency injection (like we are above) works fine, but does become harder to
maintain as the number of dependencies and components in an application increases.

Several dependency injection frameworks exist for .NET that can help provide even more dependency
management flexibility. These frameworks, also sometimes called “Inversion of Control” (IoC)
containers, provide mechanisms that enable an additional level of configuration support for specifying
and passing dependencies to objects at runtime (most often using constructor injection). Some of the
more popular OSS Dependency Injection / IOC frameworks in .NET include: AutoFac, Ninject,
Spring.NET, StructureMap, and Windsor.

ASP.NET MVC exposes extensibility APIs that enable developers to participate in the resolution and
instantiation of controllers, and which enables Dependency Injection / IoC frameworks to be cleanly
integrated within this process. Using a DI/IOC framework would also enable us to remove the default
constructor from our DinnersController – which would completely remove the coupling between it and
the DinnerRepository.s

We won’t be using a dependency injection / IOC framework with our NerdDinner application. But it is
something we could consider for the future if the NerdDinner code-base and capabilities grew.

Page 180 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

Creating Edit Action Unit Tests
Let’s now create some unit tests that verify the Edit functionality of the DinnersController. We’ll start by
testing the HTTP-GET version of our Edit action:

//
// GET: /Dinners/Edit/5

[Authorize]
public ActionResult Edit(int id) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View("InvalidOwner");

 return View(new DinnerFormViewModel(dinner));
}

We’ll create a test that verifies that a View backed by a DinnerFormViewModel object is rendered back
when a valid dinner is requested:

[TestMethod]
public void EditAction_Should_Return_View_For_ValidDinner() {

 // Arrange
 var controller = CreateDinnersController();

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

When we run the test, though, we’ll find that it fails because a null reference exception is thrown when
the Edit method accesses the User.Identity.Name property to perform the Dinner.IsHostedBy() check.

The User object on the Controller base class encapsulates details about the logged-in user, and is
populated by ASP.NET MVC when it creates the controller at runtime. Because we are testing the
DinnersController outside of a web-server environment, the User object isn’t set (hence the null
reference exception).

Mocking the User.Identity.Name property
Mocking frameworks make testing easier by enabling us to dynamically create fake versions of
dependent objects that support our tests. For example, we can use a mocking framework in our Edit
action test to dynamically create a User object that our DinnersController can use to lookup a simulated
username. This will avoid a null reference from being thrown when we run our test.

Page 181 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

There are many .NET mocking frameworks that can be used with ASP.NET MVC (you can see a list of
them here: http://www.mockframeworks.com/). For testing our NerdDinner application we’ll use an
open source mocking framework called “Moq”, which can be downloaded for free from
http://www.mockframeworks.com/moq.

Once downloaded, we’ll add a reference in our NerdDinner.Tests project to the Moq.dll assembly:

We’ll then add an overloaded “CreateDinnersControllerAs(username)” helper method to our test class
that takes a username as a parameter, and which then “mocks” the User.Identity.Name property on the
DinnersController instance:

http://www.mockframeworks.com/�
http://www.mockframeworks.com/moq�

Page 182 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

DinnersController CreateDinnersControllerAs(string userName) {

 var mock = new Mock<ControllerContext>();
 mock.SetupGet(p => p.HttpContext.User.Identity.Name).Returns(userName);
 mock.SetupGet(p => p.HttpContext.Request.IsAuthenticated).Returns(true);

 var controller = CreateDinnersController();
 controller.ControllerContext = mock.Object;

 return controller;
}

Above we are using Moq to create a Mock object that fakes a ControllerContext object (which is what
ASP.NET MVC passes to Controller classes to expose runtime objects like User, Request, Response, and
Session). We are calling the “SetupGet” method on the Mock to indicate that the
HttpContext.User.Identity.Name property on ControllerContext should return the username string we
passed to the helper method.

We can mock any number of ControllerContext properties and methods. To illustrate this I’ve also
added a SetupGet() call for the Request.IsAuthenticated property (which isn’t actually needed for the
tests below – but which helps illustrate how you can mock Request properties). When we are done we
assign an instance of the ControllerContext mock to the DinnersController our helper method returns.

We can now write unit tests that use this helper method to test Edit scenarios involving different users:

[TestMethod]
public void EditAction_Should_Return_EditView_When_ValidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs("SomeUser");

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.IsInstanceOfType(result.ViewData.Model,
 typeof(DinnerFormViewModel));
}

[TestMethod]
public void EditAction_Should_Return_InvalidOwnerView_When_InvalidOwner() {

 // Arrange
 var controller = CreateDinnersControllerAs("NotOwnerUser");

 // Act
 var result = controller.Edit(1) as ViewResult;

 // Assert
 Assert.AreEqual(result.ViewName, "InvalidOwner");
}

Page 183 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

And now when we run the tests they pass:

Testing UpdateModel() scenarios
We’ve created tests that cover the HTTP-GET version of the Edit action. Let’s now create some tests
that verify the HTTP-POST version of the Edit action:

//
// POST: /Dinners/Edit/5

[AcceptVerbs(HttpVerbs.Post), Authorize]
public ActionResult Edit (int id, FormCollection collection) {

 Dinner dinner = dinnerRepository.GetDinner(id);

 if (!dinner.IsHostedBy(User.Identity.Name))
 return View("InvalidOwner");

 try {
 UpdateModel(dinner);

 dinnerRepository.Save();

 return RedirectToAction("Details", new { id=dinner.DinnerID });
 }
 catch {
 ModelState.AddModelErrors(dinner.GetRuleViolations());

 return View(new DinnerFormViewModel(dinner));
 }
}

The interesting new testing scenario for us to support with this action method is its usage of the
UpdateModel() helper method on the Controller base class. We are using this helper method to bind
form-post values to our Dinner object instance.

Below are two tests that demonstrates how we can supply form posted values for the UpdateModel()
helper method to use. We’ll do this by creating and populating a FormCollection object, and then assign
it to the “ValueProvider” property on the Controller.

Page 184 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

The first test verifies that on a successful save the browser is redirected to the details action. The
second test verifies that when invalid input is posted the action redisplays the edit view again with an
error message.

public void EditAction_Should_Redirect_When_Update_Successful() {

 // Arrange
 var controller = CreateDinnersControllerAs("SomeUser");

 var formValues = new FormCollection() {
 { "Title", "Another value" },
 { "Description", "Another description" }
 };

 controller.ValueProvider = formValues.ToValueProvider();

 // Act
 var result = controller.Edit(1, formValues) as RedirectToRouteResult;

 // Assert
 Assert.AreEqual("Details", result.RouteValues["Action"]);
}

[TestMethod]
public void EditAction_Should_Redisplay_With_Errors_When_Update_Fails() {

 // Arrange
 var controller = CreateDinnersControllerAs("SomeUser");

 var formValues = new FormCollection() {
 { "EventDate", "Bogus date value!!!"}
 };

 controller.ValueProvider = formValues.ToValueProvider();

 // Act
 var result = controller.Edit(1, formValues) as ViewResult;

 // Assert
 Assert.IsNotNull(result, "Expected redisplay of view");
 Assert.IsTrue(result.ViewData.ModelState.Count > 0, "Expected errors");
}

Testing Wrap-Up
We’ve covered the core concepts involved in unit testing controller classes. We can use these
techniques to easily create hundreds of simple tests that verify the behavior of our application.

Because our controller and model tests do not require a real database, they are extremely fast and easy
to run. We’ll be able to execute hundreds of automated tests in seconds, and immediately get feedback
as to whether a change we made broke something. This will help provide us the confidence to
continually improve, refactor, and refine our application.

Page 185 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

We covered testing as the last topic in this chapter – but not because testing is something you should do
at the end of a development process! On the contrary, you should write automated tests as early as
possible in your development process. Doing so enables you to get immediate feedback as you develop,
helps you think thoughtfully about your application’s use case scenarios, and guides you to design your
application with clean layering and coupling in mind.

A later chapter in this book will discuss Test Driven Development (TDD), and how to use it with ASP.NET
MVC. TDD is an iterative coding practice where you first write the tests that your resulting code will
satisfy. With TDD you begin each feature by creating a test that verifies the functionality you are about
to implement. Writing the unit test first helps ensure that you clearly understand the feature and how it
is supposed to work. Only after the test is written (and you have verified that it fails) do you then
implement the actual functionality the test verifies. Because you’ve already spent time thinking about
the use case of how the feature is supposed to work, you will have a better understanding of the
requirements and how best to implement them. When you are done with the implementation you can
re-run the test – and get immediate feedback as to whether the feature works correctly. We'll cover
TDD more in Chapter 10.

Page 186 of 186

Chapter 1 is licensed under the terms of Creative Commons Attribution No Derivatives 3.0 license and may be redistributed according to those terms with the
following attribution: “Chapter 1 “NerdDinner” from Professional ASP.NET MVC 1.0 written by Rob Conery et al published by Wrox (ISBN: 978-0-470-38461-9) may
be redistributed under the terms of Creative Commons Attribution No Derivatives 3.0 license. The original copy is available at http://tinyurl.com/aspnetmvc. The
complete book Professional ASP.NET MVC 1.0 is copyright 2009 by Wiley Publishing Inc and may not be redistributed without permission.”

NerdDinner Wrap Up
Our initial version of our NerdDinner application is now complete and ready to deploy on the web.

We used a broad set of ASP.NET MVC features to build NerdDinner. Hopefully the process of developing
it shed some light on how the core ASP.NET MVC features work, and provided context on how these
features integrate together within an application.

The following chapters will go into more depth on ASP.NET MVC and discuss its features in detail.

Creative Commons License

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES
NOT PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE
DOES NOT CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE
COMMONS PROVIDES THIS INFORMATION ON AN “AS-IS” BASIS.
CREATIVE COMMONS MAKES NO WARRANTIES REGARDING THE
INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR DAMAGES
RESULTING FROM ITS USE.

License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN
AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE
MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

 1. Definitions

 a. “Adaptation” means a work based upon the Work, or upon the Work and other
pre-existing works, such as a translation, adaptation, derivative work, arrangement
of music or other alterations of a literary or artistic work, or phonogram or perfor-
mance and includes cinematographic adaptations or any other form in which the
Work may be recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a Collection will not

A

84619bapp01w.indd 1 3/2/09 8:08:48 AM

2

Appendix A: Creative Commons License

be considered an Adaptation for the purpose of this License. For the avoidance of doubt,
where the Work is a musical work, performance or phonogram, the synchronization
of the Work in timed-relation with a moving image (“synching”) will be considered an
Adaptation for the purpose of this License.

 b. “Collection” means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject mat-
ter other than works listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in which the Work is
included in its entirety in unmodified form along with one or more other contributions,
each constituting separate and independent works in themselves, which together are
assembled into a collective whole. A work that constitutes a Collection will not be consid-
ered an Adaptation (as defined above) for the purposes of this License.

 c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

 d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

 e. “Original Author” means, in the case of a literary or artistic work, the individual, indi-
viduals, entity or entities who created the Work or if no individual or entity can be iden-
tified, the publisher; and in addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver, declaim, play in, interpret
or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of
a phonogram the producer being the person or legal entity who first fixes the sounds of
a performance or other sounds; and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

 f. “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or other work of the same
nature; a dramatic or dramatico-musical work; a choreographic work or entertainment
in dumb show; a musical composition with or without words; a cinematographic work
to which are assimilated works expressed by a process analogous to cinematography; a
work of drawing, painting, architecture, sculpture, engraving or lithography; a photo-
graphic work to which are assimilated works expressed by a process analogous to pho-
tography; a work of applied art; an illustration, map, plan, sketch or three-dimensional
work relative to geography, topography, architecture or science; a performance; a broad-
cast; a phonogram; a compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to the extent it is not other-
wise considered a literary or artistic work.

 g. “You” means an individual or entity exercising rights under this License who has not pre-
viously violated the terms of this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under this License despite a previ-
ous violation.

 h. “Publicly Perform” means to perform public recitations of the Work and to communicate
to the public those public recitations, by any means or process, including by wire or wire-
less means or public digital performances; to make available to the public Works in such
a way that members of the public may access these Works from a place and at a place

84619bapp01w.indd 2 3/2/09 8:08:48 AM

3

Appendix A: Creative Commons License

individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by pub-
lic digital performance; to broadcast and rebroadcast the Work by any means including
signs, sounds or images.

 i. “Reproduce” means to make copies of the Work by any means including without limita-
tion by sound or visual recordings and the right of fixation and reproducing fixations of
the Work, including storage of a protected performance or phonogram in digital form or
other electronic medium.

 2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses
free from copyright or rights arising from limitations or exceptions that are provided for in con-
nection with the copyright protection under copyright law or other applicable laws.

 3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a
worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

 a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections; and,

 b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

 c. For the avoidance of doubt:

 i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme can-
not be waived, the Licensor reserves the exclusive right to collect such royalties for
any exercise by You of the rights granted under this License;

 ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be
waived, the Licensor waives the exclusive right to collect such royalties for any exer-
cise by You of the rights granted under this License; and,

 iii. Voluntary License Schemes. The Licensor waives the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any
exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereaf-
ter devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats, but otherwise you have no rights
to make Adaptations. Subject to Section 8(f), all rights not expressly granted by Licensor are
hereby reserved.

 4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by
the following restrictions:

 a. You may Distribute or Publicly Perform the Work only under the terms of this License.
You must include a copy of, or the Uniform Resource Identifier (URI) for, this License
with every copy of the Work You Distribute or Publicly Perform. You may not offer or
impose any terms on the Work that restrict the terms of this License or the ability of the
recipient of the Work to exercise the rights granted to that recipient under the terms
of the License. You may not sublicense the Work. You must keep intact all notices that

84619bapp01w.indd 3 3/2/09 8:08:48 AM

4

Appendix A: Creative Commons License

refer to this License and to the disclaimer of warranties with every copy of the Work
You Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work,
You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipi-
ent under the terms of the License. This Section 4(a) applies to the Work as incorporated
in a Collection, but this does not require the Collection apart from the Work itself to be
made subject to the terms of this License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the Collection any credit as
required by Section 4(b), as requested.

 b. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author
and/or Licensor designate another party or parties (e.g., a sponsor institute, publish-
ing entity, journal) for attribution (“Attribution Parties”) in Licensor’s copyright notice,
terms of service or by other reasonable means, the name of such party or parties; (ii) the
title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any,
that Licensor specifies to be associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work. The credit required by this
Section 4(b) may be implemented in any reasonable manner; provided, however, that in
the case of a Collection, at a minimum such credit will appear, if a credit for all contrib-
uting authors of the Collection appears, then as part of these credits and in a manner at
least as prominent as the credits for the other contributing authors. For the avoidance of
doubt, You may only use the credit required by this Section for the purpose of attribution
in the manner set out above and, by exercising Your rights under this License, You may
not implicitly or explicitly assert or imply any connection with, sponsorship or endorse-
ment by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You
or Your use of the Work, without the separate, express prior written permission of the
Original Author, Licensor and/or Attribution Parties.

 c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted
by applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Collections, You must not distort, mutilate, modify or take other
derogatory action in relation to the Work which would be prejudicial to the Original
Author’s honor or reputation.

 5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN
NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

84619bapp01w.indd 4 3/2/09 8:08:49 AM

5

Appendix A: Creative Commons License

 7. Termination

 a. This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Collections from You under this License, however, will not have their licenses termi-
nated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

 b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to with-
draw this License (or any other license that has been, or is required to be, granted under
the terms of this License), and this License will continue in full force and effect unless ter-
minated as stated above.

 8. Miscellaneous

 a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

 b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed
to the minimum extent necessary to make such provision valid and enforceable.

 c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged
with such waiver or consent.

 d. This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional pro-
visions that may appear in any communication from You. This License may not be modi-
fied without the mutual written agreement of the Licensor and You.

 e. The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and
Artistic Works (as amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of
1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights
and subject matter take effect in the relevant jurisdiction in which the License terms are
sought to be enforced according to the corresponding provisions of the implementation
of those treaty provisions in the applicable national law. If the standard suite of rights
granted under applicable copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the License; this License is
not intended to restrict the license of any rights under applicable law.

84619bapp01w.indd 5 3/2/09 8:08:49 AM

6

Appendix A: Creative Commons License

Creative Commons Notice
Creative Commons is not a party to this License, and makes no warranty whatsoever
in connection with the Work. Creative Commons will not be liable to You or any party
on any legal theory for any damages whatsoever, including without limitation any
general, special, incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and obliga-
tions of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of
the trademark “Creative Commons” or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use
will be in compliance with Creative Commons’ then-current trademark usage guide-
lines, as may be published on its website or otherwise made available upon request
from time to time. For the avoidance of doubt, this trademark restriction does not form
part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

84619bapp01w.indd 6 3/2/09 8:08:49 AM

Hanselman-Book-Ad-3-6-09-OUTLINES_color.pdf 3/6/09 8:52:16 AM

There’s more than one way to
build an ASP.NET Application

For developers who like to peel away layers of
abstraction and get their hands closer to the
metal, the ASP.NET MVC framework might be
for you. For developers who are extremely
particular about how their frameworks should be
put together, ASP.NET MVC is also extremely
extensible, allowing nearly any part of it to be
customized or even swapped out entirely in favor
of something that fits the developer’s own tastes.

Written by members of the ASP.NET team, this
book will show readers:

 The toolsets and technologies that

complement MVC, such as SubSonic, LINQ,
jQuery, and REST

 The structure of a standard ASP.NET MVC
application

 Advanced routing strategies and advanced
techniques for extending the framework

 How to share data between ASP.NET MVC
and ASP.NET Web Forms

 How to create a compelling, real-world
application by following along with the
authors as they create the foundation for
Nerddinner.com

Rob Conery, Scott Hanselman,
Phil Haack, Scott Guthrie

ISBN 978-0-470-38461-9, $49.99 US

Pre-order your copy today
at your favorite bookseller.

Amazon.com BarnesandNoble.com Borders.com Bookpool.com

	384619-cover-df2
	84619copyright_w
	CompleteBook - ScottGu Layout - Errors Fixed - v3
	Examining the NerdDinner directory structure
	Running the NerdDinner Application
	Testing the NerdDinner Application
	Creating a new SQL Server Express database
	Creating Tables within our Database
	Setting up a Foreign Key Relationship between Tables
	Adding Data to our Tables
	LINQ to SQL
	Adding LINQ to SQL Classes to our project
	Creating Data Model Classes with LINQ to SQL
	NerdDinnerDataContext Class
	Creating a DinnerRepository Class
	Retrieving, Updating, Inserting and Deleting using the DinnerRepository class
	Integrating Validation and Business Rule Logic with Model Classes
	Adding a DinnersController Controller
	Adding Index() and Details() Action Methods to the DinnersController Class
	Understanding ASP.NET MVC Routing
	Using the DinnerRepository from our DinnersController
	Using Views with our Controller
	Implementing the “NotFound” View Template
	Implementing the “Details” View Template
	Implementing the “Index” View Template
	Convention-based naming and the \Views directory structure
	URLs handled by DinnersController
	Implementing the HTTP-GET Edit Action Method
	Html.BeginForm() and Html.TextBox() Html Helper Methods
	Implementing the HTTP-POST Edit Action Method
	Handling Edit Errors
	Understanding ModelState and the Validation HTML Helper Methods
	Using a AddRuleViolations Helper Method
	Complete Edit Action Method Implementations
	Implementing the HTTP-GET Create Action Method
	Implementing the HTTP-POST Create Action Method
	Implementing the HTTP-GET Delete Action Method
	Implementing the HTTP-POST Delete Action Method
	Model Binding Security
	CRUD Wrap-Up
	Passing Data from Controllers to View-Templates
	Using the ViewData Dictionary
	Using a ViewModel Pattern
	Custom-shaped ViewModel classes
	Re-visiting our Edit and Create View Templates
	Using Partial View Templates
	Using Partial View Templates to Clarify Code
	Master Pages
	Index() Action Method Recap
	Understanding IQueryable<T>
	Adding a “page” value to the URL
	Adding page navigation UI
	Understanding Authentication and Authorization
	Forms Authentication and the AccountController
	Authorizing the /Dinners/Create URL using the [Authorize] filter
	Using the User.Identity.Name property when Creating Dinners
	Using the User.Identity.Name property when Editing Dinners
	Showing/Hiding Edit and Delete Links
	Indicating whether the user is RSVP’d
	Implementing the Register Action Method
	Calling the Register Action Method using AJAX
	Adding a jQuery Animation
	Cleanup - Refactor out a RSVP Partial View
	Creating a Map Partial View
	Creating a Map.js utility library
	Integrating the Map with Create and Edit Forms
	Integrating the Map with the Details View
	Implementing Location Search in our Database and Repository
	Implementing a JSON-based AJAX Search Action Method
	Calling the JSON-based AJAX method using jQuery
	Why Unit Test?
	NerdDinner.Tests Project
	Creating Unit Tests for our Dinner Model Class
	Running Tests
	Creating DinnersController Unit Tests
	Dependency Injection
	Extracting an IDinnerRepository interface
	Updating DinnersController to support constructor injection
	Creating the FakeDinnerRepository class
	Using the FakeDinnerRepository with Unit Tests
	Creating Edit Action Unit Tests
	Mocking the User.Identity.Name property
	Testing UpdateModel() scenarios
	Testing Wrap-Up

	84619bapp01w.p2
	Hanselman-Book-Ad-3-6-09-OUTLINES_color
	Pro ASP MVC BoB

